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a b s t r a c t 

Bed forms in natural rivers and man-made channels provide the dominant contribution to 

overall flow resistance and hence significantly affect sediment transport rate. Many labo- 

ratory experiments and field observations have been conducted on bed forms, and it was 

found that theoretical flat-bed assumptions do not give the correct estimation for the to- 

tal suspended load (TSL). In this study, we present a systematic numerical investigation of 

turbulent open-channel flows over bed forms using the Lattice Boltzmann Method (LBM). 

A static Smagorinsky model is incorporated into LBM to account for turbulence, and the 

dynamic interface between fluid and air is captured by a free-surface model. The time- 

averaged flow velocity, turbulence intensity and Reynolds shear stress in LBM simulations 

show an excellent agreement with the available experimental data. In addition, the coher- 

ent flow structures induced by the bed forms qualitatively agree with previous numerical 

results from Large Eddy Simulations based the Navier–Stokes equations. We then proceed 

to investigate the effects of bed form roughness, quantified by the total friction factor f T , 

on sediment transport. It is found that the prediction of the TSL based on the theoretical 

flat-bed assumptions may lead to an overestimation of up to 30%, depending on the bed 

form roughness. In addition, the normalized TSL is linearly proportional to f T and nearly 

inversely proportional to the ratio of downward settling velocity and upward turbulence 

induced diffusion. Our work proposes a general law linking these quantities to estimate 

the TSL, which has the potential for a more efficient and accurate engineering design of 

man-made channels and improved river management. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Bed forms are present in nearly all fluvial channels and play an important role in dictating flow resistance, sediment

transport and deposition. The presence of bed forms may alter the flow field and consequently affect the sediment transport

in suspension. Generally, the strong wakes resulting from flow separation behind each bed form element will lead to an

increase in the overall turbulence levels, and hence an extra turbulence induced diffusion that is able to enhance the flow

capacity to carry sediments in suspension [1] . The increase of suspension concentration is one of the major sources of

water pollutants which may harm the aquatic ecology [2] . Therefore, an in-depth study of the relationship between bed

forms and sediments in suspension is of vital importance both in economy and in ecology. 
∗ Corresponding author. 

E-mail address: fiona.kwok@hku.hk (C.Y. Kwok). 

https://doi.org/10.1016/j.apm.2018.07.011 

0307-904X/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.apm.2018.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2018.07.011&domain=pdf
mailto:fiona.kwok@hku.hk
https://doi.org/10.1016/j.apm.2018.07.011


592 G.C. Yang et al. / Applied Mathematical Modelling 63 (2018) 591–610 
Notation 

u, v instantaneous flow velocities in x - and y -direction 

ū , v̄ time-averaged flow velocities in x - and y -direction 

u ′ , v ′ velocity fluctuations in x - and y -direction 

u sd , v sd turbulence intensities in x - and y -direction 

τ Re Reynolds shear stress ( −ρu ′ v ′ ) 
ρ fluid density 

C sediment concentration 

u p velocity of the suspended sediments 

ε diffusivity tensor of the sediments 

w settling velocity of the sediments 

x, y streamwise and wall-normal directions 

ε m momentum diffusivity tensor 

γ proportionality between ε and ε m 

f i density distribution function in the i th direction 

x position of the lattice cell 

c i lattice speed in the i -th direction 

δt time step 

t simulation time 

τ 0 relaxation coefficient 

f 
eq 
i 

equilibrium density distribution function 

u fluid velocity 

p fluid pressure 

c s lattice speed of sound 

Re Reynolds number 

L lu characteristic length in lattice units 

U lu characteristic velocity in lattice units 

ν0 fluid kinematic viscosity in lattice units 

νtotal total fluid viscosity in lattice units 

νeddy turbulence eddy viscosity in lattice units 

τ total effective relaxation time 

C s Smagorinsky constant 

� filtered length of the Smagorinsky model 

S large eddy strain rate tensor 

α, β spatial indices 

πneq 

αβ
sum of the second-order moments of the nonequilibrium f i 

� magnitude of the tensor πneq 

αβ

η fluid fraction of a lattice cell 

m fluid mass inside a lattice cell 

ρA density of the gas phase 

n surface normal vector 

κ small offset for cell type conversion 

L resolution of the cavity flow or the periodic length of the bed forms 

U velocity of the upper boundary in the cavity flow or mean flow velocity 

h w 

height of the residual water column 

x w 

advance of the collapsing water column 

H i , L i initial height and length of the water column 

L r , L t lengths of the recirculation region and the flume 

L e distance between the entrance and the measured section 

h height of the bed form element 

H mean depth of the fluid flow 

μ, σ mean value and standard deviation 

u ∗ total shear velocity 

Fr Froude number 

g gravitational acceleration 

S slope of the inclined open channel 

W width of the open channel 
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f T total friction factor 

τw 

wall shear stress 

ω z vorticity in the spanwise direction 

y 0 reference level 

C 0 sediment concentration at the reference level 

�y resolution equal to the lattice spacing 

Z weighting factor 

y s level of the free surface 

q s normalized total suspended load 

q sf normalized total suspended load based on the flat-bed assumptions 

q ss normalized total suspended load based on the simulation results 

a 1 , a 2 , a 3 fitting parameters 

Q regularized total suspended load q ss Z 
a 3 

Numerous laboratory tests [1,3–5] and field measurements [6,7] of flow over bed forms have been conducted. Lyn

[4] carried out experiments on open channel flows of constant mean depth over periodic bed forms with two different

triangular shapes. Interestingly, it was found that the flat-bed assumption may grossly overestimate the local suspended

sediment concentration (SSC) and the total suspended load (TSL). A recent field study of flows over bed forms was carried

out by Holmes and Garcia [6] on the Missouri River. It was shown that the large river-scale and laboratory-scale flows have

the similar characteristics, with flow separation at the crest of bed form element and flow reattachment on the stoss side

of the next bed form element. Nevertheless, due to the wake and turbulence induced by bed forms [1,3,4] , a lack of flow

similarity can be expected at the near-bed region. 

The previous experimental study [4] has already shown that the TSL in rivers can be significantly altered by the

formation of bed forms. It is because of the complex flow structures induced by the bed forms, which are believed to

be the dominating factor to sediment transport [8] . However, it is rather difficult to capture these coherent structures in

experiments due to the lack of spatial and temporal resolutions. Furthermore, there is still a lack of relationship that can

quantitatively describe the effects of bed forms with various configurations on the SSC and the TSL. 

To complement the limited data measured in experiments, simulations of flow over bed forms have been carried out

using a variety of numerical techniques based on Computational Fluid Dynamics (CFD) [9–14] . Yoon and Patel [9] used the

Reynolds-averaged Navier–Stokes (RANS) method [15–17] with the k − ω model from Wilcox [15] to study the effect of

bed forms with various wavelengths and heights on the flow resistance. Mendoza and Shen [10] simulated turbulent flow

over dune-like bed forms using the RANS method with the Algebraic Stress Model for the Reynolds stress [18] . The RANS

results were in good agreement with the measured experimental data in terms of the mean flow velocity profiles and the

Reynolds shear stress profiles. In addition, it was observed that for bed forms with large friction factor, the form resistance

dominates over the bed-skin resistance [10] . However, the RANS method does not offer an instantaneous flow filed [16,17] .

Consequently, the turbulence coherent structures, which are responsible for sediment transport, are still unattainable. 

More recent simulations have been performed using the Large Eddy Simulation (LES) method [19] in which the

large-scale eddies are fully resolved, whereas the small sub-grid scale (SGS) eddies are modeled by turbulence models

[16,17,20] . Yue et al. [11] simulated turbulent open-channel flow over two-dimensional (2D) bed forms using LES with the

free-surface simulated by a level set method [21] . In the flow with depth equal to 6.6 times of the dune height, large

vortical structures were generated at the dune crest and the formation of streaky near wall structures were also observed

after flow reattachment. The evolution and dynamics of the coherent structures and their interactions with the main body

of the flow, as well as the free-surface were further detailed in the reference [12–14] . However, LES simulations based on

Navier–Stokes equations are still computationally expensive. And special attentions, regarding to boundary method, mesh

generation and near-wall spatial resolution, are always required to accurately describe the solid wall boundaries. 

Alternatively, the Lattice Boltzmann Method (LBM) has become a reliable numerical technique to simulate fluid flows,

with a detailed review provided by Chen and Doolen [22] . Compared to conventional CFD, LBM is particularly successful

in multiphase fluid flows and problems involving complex boundary conditions. Besides benefiting from the localized

operation of the lattice Boltzmann equation, LBM is highly parallelizable in high performance computers (HPC). In addition,

no iteration is required to solve for the flow velocity field and pressure field, which makes LBM in general much more

efficient than the Navier–Stokes approaches, especially for transient problems [23] . 

Previous numerical studies [9–14] mainly focus on the flow patterns altered by the bed forms. While the goal of this

study is to quantitatively investigate the effects of bed forms on the TSL based on the diffusional theory for suspensions

[24] . The effects of bed forms with various configurations are quantified by their roughness with a total friction factor, f T
[25,26] . Numerical simulations are performed to provide accurate velocity and Reynolds shear stress profiles for the analysis

of SSC and TSL, instead of relying on the theoretical flat-bed assumptions [24] . We choose LBM, as the first attempt, to

capture the complex behaviors of turbulent flow over bed forms in an accurate and efficient manner. LBM is extended by

incorporating the Smagorinsky sub-grid scale model [27] to simulate the effects of unresolved small eddies in turbulence.

Also, a free-surface boundary [28] is incorporated to capture the dynamic interface between fluid and air. 
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This work is organized as follows: Section 2 first introduces the diffusional theory for suspensions, followed by a

detailed formulation of the lattice Boltzmann algorithm. Then, the Smagorinsky SGS model and the free-surface model are

verified against the driven cavity flow problem and the dam-break problem in Section 3 . Section 4 presents the simulations

of turbulent flow over bed forms. The model is validated against the experimental data available in the literature and is

compared to previous LES simulations based on the Navier–Stokes equations. In Section 5 , the effects of bed form roughness

on the flow transport properties are evaluated. 

2. Theoretical background 

2.1. Turbulence 

Turbulence fluctuations are one of the major causes to the suspension of sediments. In this study, although simulations

of turbulent flow over bed forms are conducted in three dimensions, which are necessary to capture correctly the basic

turbulence dynamics, analysis is carried out mainly in the streamwise ( x ) and wall-normal ( y ) directions. Make u and v be

the instantaneous velocity components, ū and v̄ be the mean velocity components in x and y directions, respectively. The

corresponding components of turbulence fluctuations, u ′ and v ′ , can be defined as [29] : 

u = ū + u 

′ , v = v̄ + v ′ . (1) 

The standard deviation of the instantaneous velocity , u sd or v sd , is taken as a measure of turbulence intensity. Reynolds

shear stress ( τ Re ) is given by the average of the velocity fluctuations as [29] : 

τRe = −ρu 

′ v ′ (2) 

where ρ is the fluid density. 

2.2. Diffusional theory for suspensions 

The dynamics of the suspended particles of the flow can be described by an advection-diffusion equation written as: 

∂C 

∂t 
+ u p · ∇C = ∇ · ( ε · ∇C ) , (3) 

where C stands for the concentration of particles, t for the time, u p for the velocity of the dispersed particles and ε is the

diffusivity tensor of the particles. 

In this work, it is assumed that the particles are passively transported by the fluid with the local mean velocity of the

flow. Since the particles considered here are not neutrally buoyant, they have a settling velocity −w e y , that depends on the

properties of the particles (e.g. density and diameter). Therefore, the velocity of the particles is given by: 

u p = ( ̄u , ̄v − w ) . (4) 

Note here that we are only considering the two-dimensional (2D) central cross-section of the channel. In this case, the

diffusivity tensor is given by: 

ε = 

[
ε xx ε xy 

ε yx ε yy 

]
, (5) 

and Eq. (3) becomes: 

∂C 

∂t 
+ ū 

∂C 

∂x 
+ ( ̄v − w ) 

∂C 

∂y 
= 

∂ 

∂x 

[
ε xx 

∂C 

∂x 
+ ε xy 

∂C 

∂y 

]
+ 

∂ 

∂y 

[
ε yx 

∂C 

∂x 
+ ε yy 

∂C 

∂y 

]
. (6) 

Assuming that the flow is steady and homogeneous along the x -direction, and that it has zero mean vertical velocity,

Eq. (6) can be written as: 

−w 

∂C 

∂y 
= 

∂ 

∂y 

(
ε yy 

∂C 

∂y 

)
. (7) 

Eq. (7) can be integrated with respect to y , which yields: 

−wC − ε yy 
∂C 

∂y 
= f (x ) , (8) 

where f ( x ) is an arbitrary function of x . Since the flow is homogeneous in x , and the left-hand side (LHS) of Eq. (8) represents

the net flux of particles across a horizontal plane, therefore, f (x ) = constant = 0 , and Eq. (8) becomes: 

−wC − ε yy 
∂C 

∂y 
= 0 . (9) 

This equation was originally obtained by Schimdt [30] in a different context of particle transport. 

gengc
Pencil

gengc
Pencil

gengc
Pencil

gengc
Pencil

gengc
Pencil
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Fig. 1. Lattice structures: (a) D2Q9 for 2D problems; (b) D3Q19 for 3D problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to solve Eq. (9) , the particle diffusivity ε yy = ε yy (y ) has to be determined. The particle diffusivity should

take into account the diffusion of particles that is induced by the turbulent motion of the fluid. It is assumed that the

turbulence-induced diffusion due to velocity fluctuations is of much larger intensity than any other diffusional mechanism

that could induce particle dispersion. Based on this assumption, and on the assumption that the particles are passively

carried by the flow, it is proposed that the particle diffusivity is proportional to the momentum diffusivity, that is, 

ε = γ ε 

m , (10)

where ε m is the momentum diffusivity tensor. The coefficient of proportionality between ε and ε m is denoted as γ . 

The turbulence-induced diffusion of particles is due to the velocity fluctuations of the flow that generate an extra shear

stress ( τ Re ) that suspends and diffuses particles. From the mixing length theory [31] , the Reynolds shear stress is linked to

the local mean gradient velocity of the flow, that is, 

τRe = ρε m 

yy 

∂ ̄u 

∂y 
. (11)

Since both τ Re (see Eq. (2)) and the velocity gradient are known from the flow, we can deduce that the particle

diffusivity is given by: 

ε yy = −γ ρ
u 

′ v ′ 
∂ ̄u 
∂y 

. (12)

2.3. Lattice Boltzmann formulation 

LBM is a mesoscopic description of fluid flow based on the kinetic theory [22] and is able to describe the fluid system

by a collection of molecules residing on a regular lattice. A set of density distribution functions are used to represent the

collection of molecules at each lattice node, where collisions between a group of molecules take place by following the

conservation laws of mass, momentum and energy. At each time step, the post-collision density distribution functions are

passed to the neighboring lattice nodes by a streaming process, described in [22] . 

In LBM, the evolution equation for the density distribution function f i ( x , t) with a BGK approximation (named after

Bhatnagar, Gross, and Krook) [32] , can be written as: 

f i ( x + c i δt , t + δt ) − f i ( x , t ) = − 1 

τ0 

[
f i ( x , t ) − f eq 

i ( x , t ) 
]
, (13)

where the density distribution function f i is related to the number of molecules at time t positioned at x moving with

velocity c i along the i- th direction at each lattice node. Fig. 1 shows the lattice structures D2Q9 and D3Q19 used for

two-dimensional and three-dimensional (3D) problems. The time step for evolution and the relaxation time are δt and τ 0 ,

respectively. The equilibrium distribution function (EDF) is f 
eq 
i 

. Based on the conservation of mass and momentum, the

fluid density ρ and velocity u can be easily reconstructed from the velocity moments of the discrete density distribution

functions [22] : 

ρ = 

∑ 

i 

f i , (14)

ρu = 

∑ 

i 

c i f i . (15)
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The pressure field p is related to the fluid density by the equation of state: 

p = c 2 s ρ, (16) 

where c s is the lattice speed of sound and equal to 1 / 
√ 

3 for both D2Q9 and D3Q19 lattice structures [22] . 

2.4. Smagorinsky subgrid scale model 

Normally, a fluid flow becomes turbulent when the Reynolds number (Re) is large. It is defined by: 

Re = 

L lu U lu 

ν0 

, (17) 

where L lu and U lu are the characteristic length and velocity in lattice units, respectively, and ν0 is the kinematic viscosity

in lattice units that is related to the relaxation time τ 0 by: 

ν0 = c 2 s 

(
τ0 − 1 

2 

)
. (18) 

According to Eq. (17) , a high Reynolds number can be achieved by a large value of L lu . However, a large L lu requires large

number of lattice cells across the characteristic length which means high resolution. Therefore, there is a constraint to the

maximum value of Reynolds number due to the computational limit. In addition, it is also not an option to increase the

characteristic velocity U lu to achieve a high Reynolds number as U lu needs to be small to ensure the small value of Mach

number for incompressible fluid. The only way to achieve high Reynolds number is to have a small ν0 , and hence a τ 0 

close to 0.5, according to Eq. (18) . 

In this study, the standard Smagorinsky SGS model proposed by Hou et al. [27] is incorporated into LBM, taking the

effects from unresolved small scale eddies into consideration. The detailed Smagorinsky SGS model is available in the

reference [27] , and the key equations are summarized in the following. 

The total fluid viscosity ( νtotal ) equals to the sum of the molecular viscosity ( ν0 ) and the turbulence eddy viscosity

( νeddy ): 

νtotal = ν0 + νed d y = c 2 s 

(
τtotal −

1 

2 

)
, (19) 

where τ total is the effective relaxation time, so that Eq. (13) becomes: 

f i ( x + c i δt , t + δt ) − f i ( x , t ) = − 1 

τtotal 

[
f i ( x , t ) − f eq 

i ( x , t ) 
]
. (20) 

Comparing Eqs. (13) and (20) , the unresolved small eddies are approximated by the eddy viscosity that is incorporated

into the term τ total . In order to solve for the effective relaxation time τ total , the turbulence eddy viscosity, νeddy , needs to

be determined. For the standard Smagorinsky SGS model, νeddy is given by: 

νed d y = C 2 s �
2 | S | , (21) 

where C s is the model parameter, also known as the Smagorinsky constant, � is the filtered length and is set to be equal

to the lattice spacing δx in LBM and | S| = (2 S αβS αβ ) 1 / 2 is the magnitude of large eddy strain rate tensor, given by: 

S αβ = 

1 

2 

(
∂ ̄u α

∂x β
+ 

∂ ̄u β

∂x α

)
, (22) 

where α and β are the spatial indices. From the Chapman–Enskog expansion of the lattice Boltzmann equation [27] , it can

be found that the strain rate tensor can be calculated locally from the summation of the second-order moments of the

nonequilibrium distributions in all lattice directions: 

πneq 

αβ
= 

∑ 

i 

c iαc iβ
(

f i − f eq 
i 

)
= −2 c 2 s ρτtotal S αβ, (23) 

and so: 

� = 

√ 

πneq 

αβ
πneq 

αβ
= 2 c 2 s ρτtotal | S| . (24) 

If we eliminate | S | from Eqs. (21) and (24) , and substitute νeddy into Eq. (19) , the effective relaxation time can be

determined by: 

τtotal = 

τ0 + 

√ 

τ 2 
0 

+ 2 C 2 s �
2 �

(
ρc 4 s 

)−1 

2 

(25) 

Substituting Eq. (25) into Eq. (20) , the density distribution functions at each time step can be solved. The value of

the Smagorinsky constant C s can be quite different for various problems, depending on the Reynolds number, geometry,

resolution and others. For the simulation of turbulent flow over bed forms, the C s value is adopted as 0.11 based on the

parametric study presented in Section 4.2 . 
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Fig. 2. Two-dimensional representation of lattice cells, including gas (white), interface (light gray) and fluid (dark gray). The interface cells intersected 

with the real surface (blue dashed curve) are characterized by the fluid volume fraction (see Eq. (26)) . Reconstructions of density distribution functions 

are required for particles streaming from gas cells to interface cells (red dashed arrows). The surface normal, n , can be estimated using Eq. (32). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Free-surface model 

A free-surface algorithm, which was initially proposed to describe the dynamic form of molten metal [28,33] , is applied

in this study to simulate the top surface of the open channel flow [4] . The simulation domain consists of three different

types of cells: “fluid”, in which the cell is completely filled with fluid; “gas”, where the cell contains no fluid and “interface”

that always exists between the fluid and gas cells and are partially filled with fluid (see Fig. 2 ). 

The evolution of the free surface involves following three steps: a) computation of interface movement; b) reconstruction

of unknown distribution functions based on the boundary conditions at the fluid interface; c) re-initialization of cell types. 

2.5.1. Mass flux between interface cell and neighboring cells (fluid or interface) 

In order to track the fluid-gas interface, two additional parameters are required for each cell, including mass m and fluid

fraction η. The fluid fraction is equal to the mass of fluid present in each cell divided by the total fluid mass that the cell

can accept. Considering a unit volume for each lattice cell, then: 

η = 

m 

ρ
. (26)

The distribution functions in LBM correspond to the number of particles, and therefore, the mass flux can be directly

calculated from the difference between the distribution functions streaming into and out of the considered cell. For an

interface cell at x and a fluid cell at x + c i δt , the change of mass can be written as: 

�m i ( x , t + δt ) = f i,opp ( x + c i δt , t ) − f i ( x , t ) . (27)

Here, the subscript i denotes the direction leaving the cell and i, opp represents the opposite direction entering the

cell. If the neighboring cell is also an interface cell, the distribution functions are multiplied by the contact area that is

approximated by the average fluid fractions, that is: 

�m i ( x , t + δt ) = 

[
f i,opp ( x + c i δt ) − f i ( x , t ) 

]η( x + c i δt , t ) + η( x , t ) 

2 

. (28)

Both Eqs. (27) and (28) are completely symmetric, meaning that the amounts of fluid particles leaving one lattice cell

have to enter another cell, and vice versa. In another word, the mass is intrinsically conserved: 

�m i ( x , t ) = −�m i,opp ( x + c i δt , t ) . (29)

The mass fluxes in all directions are added to the mass at the current time step for the considered interface cell to

calculate the mass for the next time step: 

m i ( x , t + δt ) = m i ( x , t ) + 

n ∑ 

i =1 

�m i ( x , t + δt ) , (30)

where n is equal to 9 for 2D problems and 19 for 3D problems. 

2.5.2. Reconstruction of distribution functions streaming from gas cells 

Similar to the lattice cells for solid boundaries, the distribution functions for gas cells are not accessed by assuming that

the effect of gas phase on the motion of fluid phase is negligible [28] . This is a reasonable assumption for this study as

long as the bulk fluid motion is concerned [11] . It is assumed that the gas phase has a density equal to ρ that is much
A 
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smaller than the fluid phase. It can also be considered that the gas reaches an equilibrium state much faster than the fluid.

Besides, the gas and fluid shall share the same velocity ( u ) at the interface. Therefore, the unknown distribution functions

streaming from the gas cells to the interface cells can be determined from the following equation: 

f i,opp ( x , t + δt ) = f eq 
i ( ρA , u ) + f eq 

i,opp ( ρA , u ) − f i ( x , t ) . (31) 

In order to balance the force on each side of the free surface, so that the dynamic boundary condition is fulfilled,

the distribution functions streaming from the neighboring interface cells also need to be reconstructed, using Eq. (31) , if

n · c i < 0 , where n is the surface normal pointing to the gas phase that can be approximated by the central difference of

fluid fractions: 

n = 

1 

2 

⎡ 

⎣ 

η
(
x j−1 ,k,l 

)
− η

(
x j+1 ,k,l 

)
η
(
x j,k −1 ,l 

)
− η

(
x j,k +1 ,l 

)
η
(
x j,k,l−1 

)
− η

(
x j,k,l+1 

)
⎤ 

⎦ . (32) 

2.5.3. Re-initialization of cell types 

All distribution functions are determined for the interface cells after the streaming and reconstruction steps. The collision

steps are conducted and Eq. (14) is used to update the density for the interface cells. The conversion of interface cell into

fluid or gas cell is performed by the following criteria: 

Interface cell → Fluid cell m ( x , t + δt ) > ( 1 + κ) ρ( x , t + δt ) , 

Interface cell → Gas cell m ( x , t + δt ) < ( 0 − κ) ρ( x , t + δt ) , (33) 

where κ is a small offset and is set to be 0.001 to prevent new surrounding interface cells from being re-converted for the

next time step [33] . For a new fluid cell, all neighboring gas cells are converted into interface cells. While for a new gas

cell, all neighboring fluid cells are converted into the interface cells. The masses of fluid and gas cells are always equal to 1

and 0, respectively, resulting in excess (nonzero) mass during cell conversion. In order to maintain the mass conservation,

the excess mass is distributed to the neighboring interface cells. 

3. Verification of the code 

3.1. Driven cavity flow at high Reynolds number 

The classical two-dimensional driven cavity flow is widely used as a benchmark problem to test the efficiency and

accuracy of numerical models. A comprehensive study has been conducted by Erturk [34] to characterize the flow pattern

using CFD. Although a vast literature shows that the solution for driven cavity flow problem becomes unsteady once the

Reynolds number is higher than 80 0 0 [35–37] based on the velocity of the top boundary, U , it is found that the numerical

instability can be avoided by increasing the resolution [38] or incorporating a turbulent model in this study. Fig. 3 (a) shows

the geometry of the driven cavity flow problem with 256 lattice cells in horizontal and vertical directions. In this study,

LBM is applied to simulate the 2D driven cavity flow at Reynolds numbers of 10 0 0 and 21,0 0 0. 

For Re = 10 0 0, a laminar flow is observed and the LBM simulation converges to a steady state. The horizontal and

vertical velocity profiles agree well with the data available in [38] (see the square symbols and the solid lines in Fig. 3 (b)

and (c)). For Re = 21,0 0 0, however, it is not possible to achieve a steady state with the chosen resolution. Incorporating

the Smagorinsky SGS model introduced in Section 2.4 with C s = 0.3, a steady solution can be achieved (see the triangle

symbols and the dashed lines in Fig. 3 (b) and (c)). A good agreement between the LBM results and the data available in

[38] proves that the Smagorinsky SGS model incorporated in the current LBM code performs effectively. 

3.2. Thee-dimensional dam break problem 

The free-surface model is validated through the 3D dam break problem. Nishi and Doan [39] have conducted similar

simulations in two dimension with a hybrid (partial-slip) boundary condition to take the unknown wall effects into consid-

eration so as to reproduce the phenomenon observed in the physical experiment conducted by Martin and Moyce [40] . In

the experiment, a water column with a square base of width ( L i ) equal to 5.715 cm was constrained by a thin waxed paper

diaphragm and the left wall. The height of water column ( H i ) was double of the base width. As the diaphragm wall was

removed, the water column started to fall down and flow rightward along the horizontal floor (see Fig. 4 (a)). The evolutions

of the distance between the surge front and the left wall ( x w 

) and the height of residual water column ( h w 

) were recorded.

The simplification of a three-dimensional dam break problem to two dimension may lead to some errors. For instance,

the shape of surge front cannot be captured in two dimension, which turns out to have a significant effect on the runout

distance x w 

. Different from Nishi and Doan [39] , no-slip boundary conditions are applied at the solid walls in the current

3D LBM model. A uniform resolution with 100 lattice cells along the initial height of the water column is applied. The

numerical results in terms of the evolution of the runout distance and the height of water column are compared to the

experimental data in Fig. 4 (b) and (c). A reasonably good agreement is achieved. The slight discrepancy between the LBM

results and the experimental data may be due to the effect of diaphragm wall removal in the physical test [40] . 
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Fig. 3. Simulation of two-dimensional driven cavity flow problem: (a) sketch of the square cavity with 256 lattice cells in horizontal and vertical dimen- 

sions; (b) comparison between LBM results and the data available in [38] regarding to the horizontal velocity profiles along a vertical line; (c) and the 

vertical velocity profiles along a horizontal line passing through the geometric center of the cavity at a Reynolds number equal to 10 0 0 and 21,0 0 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Simulation of turbulent flow over bed forms 

4.1. Experimental setup and numerical model 

In this section, the verified LBM code is applied to simulate the turbulent flow over bed forms. Fig. 5 shows the

geometry of bed forms and the boundary conditions following the experimental setup from Lyn [4] . The bed forms are

composed of triangular elements with a gentle upstream face and a steep downstream face with a 45-degree base angle

(called as a dune-shape in this study). The bed forms are periodic with a peak height h = 1.2 cm and a wavelength L =
15 cm. The recirculating channel is approximately 13 m long (in x -direction) and 26.67 cm wide (in z -direction) with an

adjustable slope. In the experiment of Lyn [4] , the fluid flow was measured by Laser-Doppler Velocimetry (LDV) at positions

around 9 m from the flume entrance to minimize the effect on turbulent flow from the entrance and exit. Measurements

were taken at four individual positions at x / L = 0, 0.25, 0.5 and 0.75 (see Fig. 5 ). The flow depth measured from the mean

bed level is H = 6.1 cm. All measurements are made in a longitudinal plane half-way through the spanwise length, far away

from the no-slip side walls. 

In the numerical model, only one period of the bed forms is simulated with periodic boundaries defined at the faces in

the streamwise direction. Bounce-back dynamics, i.e. no-slip boundary conditions, are assigned to the lattice nodes located

within the bed forms and also on the side walls. The free-surface model introduced in Section 2.5 is used to define the

top surface of the open-channel flow. A uniform lattice spacing �x = 1 mm is defined throughout the whole simulation

domain. A 13 mm clearance (gas phase) is initially defined to allow for the formation of a free surface. Therefore, there

are N total = 3,204,0 0 0 lattice cells in total, as a result of N x = 150, N y = 80, and N z = 267 cells in x -, y - and z -directions,

respectively. The sufficiency of the lattice resolution will be addressed in Section 4.3 . 

In order to drive the flow, the simulated flume is tilted with the same slope equal to 0.00145 as that in the experiment.

Fig. 6 shows that the mean flow velocity increases initially and becomes steady at around 28 cm/s after about 60 s. A total

of 360 s of simulation is conducted. The data acquisition frequency is set to be 100 Hz, which is sufficient for stable statistics

of the turbulent flow. The data obtained between 120 s and 360 s are used for the calculation of turbulent statistics at the

steady state, including profiles for the time-averaged flow velocity, the turbulence intensity and the Reynolds shear stress. 
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Fig. 4. Simulation of a three-dimensional dam break problem: (a) sketch of the geometry; (b) advance of the surge front; (c) and falling down of the water 

column (the step-wise curve is attributed to the spatial discretization in the numerical simulation). 
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Fig. 5. Sketch of the experimental and numerical setup, flow conditions and bed forms. 

 

 

 

 

 

 

4.2. Effect of the Smagorinsky constant 

For the standard turbulent model, the Smagorinsky constant C s needs to be calibrated. Fig. 7 shows the plot of average

flow velocities at five selected points (p1–p5, see Fig. 5 ) for different values of the Smagorinsky constant: 0.105, 0.11, 0.12,

0.15 and 0.20. The error bars correspond to the standard deviations of the instantaneous flow velocity. 

For the range of C s from 0.105 to 0.15, the time-averaged local flow velocity decreases when C s increases. It is because

the eddy viscosity becomes larger (see Eq. (21)) and hence the total fluid viscosity increases (see Eq. (19)) , resulting into a

more viscous fluid and small local velocities. When C s increases from 0.15 to 0.2, its effect on the average local flow velocity

is less significant. Besides, by comparing the average flow velocities at p1 (close to the bed) and p5 (close to the free
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Fig. 6. Development of the mean velocity of the simulated turbulent flow at Position 4. The Smagorinsky constant is defined as C s = 0.11. 

Fig. 7. Effect of the Smagorinsky constant on the time-averaged local flow velocities at (a) p1; (b) p2; (c) p3; (d) p4; and (e) p5. The dashed lines indicate 

the measured values from Lyn [4] . 

Table 1 

Summary of the lattice resolution and the computational time, T , for the simulation 

of turbulent flow over bed forms. 

Resolution Nx × Ny × Nz N total �x �x / h T 

(mm) (h) 

RL 90 × 48 × 159 686,880 1.6750 0.1396 9.5 

RN 150 × 80 × 267 3,204,0 0 0 1.0 0 0 0 0.0833 57.1 

RH 179 × 96 × 319 5,481,696 0.8375 0.0698 195.6 

 

 

 

 

 

 

 

 

 

 

surface), it can be found that the influence of C s is relatively larger for the flow close to the free-surface. Simulations with

C s value equal to 0.105 and 0.11 are able to match the experimental data [4] as indicated by the dashed lines in Fig. 7 in

terms of the average local flow velocity quite well. The simulation with C s = 0 . 11 achieves a better agreement at locations

close to the bed (see Fig. 7 (a)), where the accuracy is of more concern for the calculation of the TSL in Section 5 . Therefore,

C s is chosen to be 0.11 for the simulation of turbulent flow over bed forms in this study. 

4.3. Velocity, turbulence intensity and Reynolds shear stress 

The time-averaged horizontal ( ̄u ) and vertical ( ̄v ) velocities for Position 1–4 obtained from the simulations are shown

in Fig. 8 , together with the experimental data. In order to demonstrate the sufficiency of the adopted spatial resolution

(RN), simulations with a lower (RL) and a higher (RH) lattice resolution are performed. The adopted resolutions and the

corresponding simulation times are summarized in Table 1 . All cases are simulated with 6 compute nodes, each of which

is equipped with two 10-core Intel Xeon E5-2600 v3 processors and 96 GB physical memory. It can be clearly seen that

the simulation with RL systematically underestimates the horizontal velocity throughout the whole flow field, whereas the
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Fig. 8. Comparison between experimental data and LBM results in terms of the horizontal and vertical velocity profiles at Position 1–4: • ū (experiment); 

◦ v̄ (experiment); —– ū (LBM RL); - - - v̄ (LBM RL); —– ū (LBM RN); - - - v̄ (LBM RN); —– ū (LBM RH); - - - v̄ (LBM RH). 

Fig. 9. Comparison between experimental data and LBM results in terms of the turbulence intensity profiles at Position 1–4: • u sd / u ∗ (experiment); ◦ v sd / u ∗

(experiment); — u sd / u ∗ (LBM); - - - v sd / u ∗ (LBM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

simulation with RH yields similar results comparable with those from the simulation using RN. However, the computational

cost is significantly increased when the resolution is increased from RN to RH. 

Although a reasonably good agreement between the numerical results and the experimental data is achieved with the

resolution RN, two points deserve further comments. The first one is that the experimental setup used by Lyn [4] is not able

to measure correctly the velocities close to the free surface. The observed reduction of horizontal velocity on that region

from the numerical simulation might come from secondary circulations [11] . The second is the slightly lower horizontal

velocities close to the bed in numerical simulations, where the turbulent model may not perform very well to capture the

effects from small eddies close to the discretized solid boundary. 

The profiles for turbulence intensities in horizontal and vertical directions are calculated and compared to the measured

values in Fig. 9 . Following Lyn [4] , the turbulence intensities are normalized by the total shear velocity u ∗ = 

√ 

gHS , where

g is the gravitational acceleration and S is the mean energy slope. Again, the numerical results agree with the experimental

data quite well. Note that close to the free surface, there is a slight increase in the horizontal component, which is also

observed in the experiments indicating that the free surface model in LBM can realistically capture the large turbulence

intensities caused by the perturbations of the free surface. 

Fig. 10 compares the numerical results and experimental data regarding to the Reynolds shear stress normalized by the

shear velocity u ∗ and, again, a good agreement is achieved. The straight dashed line represents the linear variation of shear

stress corresponding to a theoretical flat-bed flow. Due to the presence of bed forms in the experiments and numerical

simulations, the Reynolds shear stress profiles are significantly altered at the inner flow region ( y / H < 0.4). Peak values are

observed at a level close to the crest of the bed forms. Nevertheless, at the outer flow region ( y / H > 0.4), both numerical

results and experimental data collapse with the flat-bed profile quite well, indicating that the bed forms mainly influence

the inner flow region. 

4.4. Turbulent flow structures 

As this is the first attempt to simulate turbulent flow over bed forms using LBM, our numerical results are carefully

compared to previously published CFD/LES results in terms of the turbulent flow structures. The spatial distribution of the
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Fig. 10. Comparison between experimental data and LBM results in terms of the Reynolds shear stress profiles at Position 1–4: • Experiment; —– LBM. 

The flat-bed profile (dashed line) is also shown for comparison. 

Fig. 11. Spatial distribution of (a) the normalized Reynolds shear stress and (b) the instantaneous vorticity in z -direction, in the longitudinal plane half-way 

through the spanwise length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

normalized Reynolds shear stress and the instantaneous vorticity in z -direction ( ω z ), in the longitudinal plane half-way

through the spanwise length, are plotted in Fig. 11 (a) and (b), respectively. 

Fig. 11 (a) shows four distinct flow areas, including the free surface area (FS), the separated shear layer (SL), the devel-

oping boundary layer (BL), and the wake layer (WL). Similar features were observed in CFD/LES simulations performed by

Stoesser et al. [12] . The FS is characterized by the layered small shear stress. The SL is produced by the strong flow separa-

tion at the dune crest, in which complex 3D flow instabilities take place, as shown in Fig. 11 (b). The SL has the highest shear

stress and it is the source of chaotic motions in the separation region just behind the dune. The vortices generated in the

separation region are carried downstream by the mean flow, forming the WL with small eddies and moderate shear stresses.

In the BL at the stoss side of the bed form beyond the reattachment, new vortices, whose sizes are much smaller than the

ones in the separation region, are generated with a upward motion. Although the bed form geometry and the flow depth

are slightly different, our LBM results are in very good qualitative agreement with previous CFD/LES simulations [12,13] . 

The kinetic energy (KE) spectrums at p1–p5 are shown in Fig. 12 . The KE per unit volume is normalized by the variance

of the instantaneous flow velocities. Clearly, it can be seen that there is a peak of KE at about 2 Hz at the middle depth of

the flow (p2–p4). The KE peak occurs at a lower and a higher frequency as it is close to the bed (p1) and the free surface

(p5), respectively. The decrease of frequency with the increase of flow depth could be due to the relatively larger eddy size

and smaller mean flow velocity close to the bed form. A rough estimation based on a cut-off frequency (10 Hz) and the

mean flow velocity (about 28 cm/s) indicates that the major portion of the KE is carried by eddies with size larger than

2.8 cm, which is much greater than the 1 mm lattice spacing used in our simulations. This indicates that the large eddies

are well resolved in the LBM simulation. 
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Fig. 12. Kinetic energy (KE) spectrums at p1–p5. 

Fig. 13. Evolution of the instantaneous flow structures visualized by the isosurfaces of pressure fluctuation at p ′ = −10 Pa. The free surfaces are plotted 

and colored by the corresponding elevations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following Stoesser et al. [12] , Grigoriadis et al. [13] , Omidyeganeh and Piomelli [14] , the instantaneous flow structures

are visualized by plotting the isosurfaces of pressure fluctuations at p ′ = −10 Pa in Fig. 13 . Owing to the flow instabilities

at the SL, as shown in Fig. 11 (b), a huge amount of roller vortices are induced near the dune crest. These vortices further

develop via successive pairings and grow into a size comparable to the dune height (A, B and C at time: 355.08 s since

the start of the LBM simulation), as also observed in LES simulations [12,13] using a Navier–Stokes approach. These flow

structures tilt upwards at different angles to the bed form. At 0.06 s later in Fig. 13 (b), structures A and B travel downstream

and are elongated due to vortex stretching, while structure C has already been broken up into smaller vortices. Some of

these small vortices persist in the flow for quite a long period before being fully dissipated due to viscous effects, as shown

in Fig. 13 (c) and (d). The whole process will repeat and last roughly for 0.2 s. 

Some of the vortical structures originated from the separation region are able to travel to the upper half of the channel

and interact with the free surface. Fig. 13 shows that the deformation of the free surface is essentially three dimensional,

which varies a lot in both streamwise and spanwise directions. Generally speaking, there are downdraft and upwelling

of the free surface at locations just behind and in front of the dune crest. As described by Yue et al. [11] , these surface

patterns are the footprints of the flow structures immediately underneath the free surface. 

Although the theoretical analysis of the relationship between bed form roughness and TSL only relies on the flow

velocity and Reynolds shear stress profiles in Section 5 , in practice, it is these complex turbulent flow structures induced

by the bed form that disperse sediments in the flow. 
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Table 2 

Summary of the case study regarding to turbulent flow over bed forms with different geometries and steepnesses. The slope is the inclination of the 

simulated flume to drive the flow. The steepness is defined as h / L . 

Case Geometry Slope h / L u ∗ U Fr Re f T 
(cm/s) (cm/s) 

1 Dune 0.0 0 066 0.06 1.97 19.30 0.252 11,581 0.083 

2 Dune 0.0 0 079 0.08 2.16 19.44 0.253 11,661 0.098 

3 Dune 0.0 0 081 0.10 2.18 19.24 0.251 11,544 0.103 

4 Circle 0.002 0.08 3.43 19.03 0.248 11,415 0.260 

5 Triangle 1 0.00301 0.08 4.21 19.57 0.255 11,744 0.369 

6 Triangle 2 0.0033 0.08 4.41 19.40 0.253 11,642 0.413 

Fig. 14. Different shapes of bed form elements for the study of the effects of bed form roughness on sediment transport: (a) Dune-shape bed form element 

in Case 1–3; (b) Circular shape bed form element for Case 4; (c) Triangular shape 1 bed form element for Case 5; (d) Triangular shape 2 bed form element 

for Case 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Effect of bed form roughness on total suspended load 

By comparing the LBM results with the experimental data and the CFD/LES results in Section 4 , it can be shown that

the LBM model is able to capture the essential turbulent characteristics of the flow over bed forms. In this section, a series

of simulations is designed to investigate the effects of bed form roughness on the transport properties of turbulent flows

over bed forms. 

A total of six cases are studied with different bed form configurations, which are summarized in Table 2 . For all cases,

the bed form height ( h ) and flow depth ( H ) are fixed to be 1.2 cm and 6 cm, respectively. The channel width ( W ) in

spanwise direction is set to be four times of the flow depth so that the influence from the side walls on the turbulent

structure is minimized. The bed form shape is adjusted to achieve different roughnesses by changing the elements of the

bed form: in this study, dune (Case 1–3), circular (Case 4) and triangular (Case 5–6) elements are used (see Fig. 14 ). Based

on experimental evidence on dune generation [41–43] , the maximum steepness ( h / L ) in nature is normally between 0.06

and 0.1. Hence, in Case 1–3, the steepness value is set to be 0.06, 0.08 and 0.1, respectively. 

The mean flow velocity U and the flow depth H are adopted as the velocity and length scales to calculate the Reynolds

number ( Re = ρHU/μ) and the Froude number ( Fr = U/ 
√ 

gH ) based on the physical parameters of the flow. In order to

compare different cases under similar hydrodynamic flow conditions, the simulated flume is tilted into different slopes

such that similar values of Re and Fr are achieved. In this study, the average Reynolds number is 11,597 and all values lie

within 1.5% of this value. The same conclusion applies to the Froude number. 

5.1. Total friction factor 

The total friction factor, f T , also known as the Darcy friction factor [25,26] , is usually used to describe the pressure loss

in pipe flows. It is defined as: 

f T = 

8 τw 

ρU 

2 
= 8 

(
u ∗
U 

)2 

, (34)

where τw 

= ρu 2 ∗ is the wall shear stress. In the current work, f T is used to characterize the flow resistance due to the

presence of bed forms. 

From Table 2 , it is observed that the steepness increases the friction factor, so as the circular and triangular elements.

The physical reason can be explained by plotting the streamlines of the flow, as shown in Fig. 15 . The total flow resistance

is composed of two components: one is the form drag due to pressure difference and the other is the skin friction. In

the case of turbulent flow over bed forms, form drag dominates over the skin friction. For the triangular elements, a large

recirculation region with low pressure is induced (see Figs. 15 (e) and (f)), resulting in a huge form drag that slows down

the flow significantly. In addition, a great amount of energy is lost in Case 4 - 6 due to the formation of more wakes behind

the circular and triangular elements [44] . 
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Fig. 15. Streamlines for the time-averaged flow field: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5; (f) Case 6. 

Fig. 16. Profiles of the normalized (a) time-averaged streamwise velocity and (b) Reynolds shear stress at Position 4, where x / L = 0.75. 

 

 

 

 

 

 

 

 

5.2. Velocity and Reynolds shear stress profiles 

The time-averaged flow velocity in streamwise direction ( ̄u ) and the Reynolds shear stress ( τ Re ) are normalized against

the mean flow velocity ( U ) and plotted in Fig. 16 . It is shown in Fig. 16 (a) that the normalized velocity profiles intersect at

a point slightly below the middle depth ( y / H = 0.5) where ū /U is roughly 1. Generally speaking, the flow over dune-shape

bed forms (Case 1–3) has a higher velocity at the inner flow region and lower velocity at the outer flow region compared to

the flow over circular and triangular bed forms (Case 4–6), in which the friction factor is much higher. Hence, the velocity

gradient in Case 1 - 3 is generally smaller than that in Case 4–6, despite the fact that they have almost the same mean

flow velocity. 

As for the Reynolds shear stress (see Fig. 16 (b)), it increases from zero at the bottom to a maximum value at a level

around y/H = 0 . 2 and decreases to a non-zero value at the free surface. It is observed that the Reynolds shear stress

consistently increases with the friction factor f . 
T 
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Fig. 17. Profiles of (a) the eddy diffusivity and (b) the sediment concentration for Case 4, when Z = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Diffusion coefficient and sediment concentration 

In this study, instead of relying on the conventional flat-bed assumption for the velocity and Reynolds shear stress

profiles [4,24] , the raw simulation data in Fig. 16 is used to calculate the eddy diffusivity based on Eq. (12) . Fig. 17 (a) shows

the calculated distribution of normalized eddy diffusivity (black solid line) for Case 4, which fluctuates a lot. A best fit line

using a third order polynomial (red dashed line) and the spatially-averaged value (green dash-dotted line) can also be used

to calculate the distribution of sediment concentrations. In addition, a theoretical diffusivity profile (blue short-dashed line)

is also plotted in Fig. 17 (a), based on the linear distribution of Reynolds shear stress (with zero value at the free surface and

ρu 2 ∗ at the mean bed level) and the well-known Prandtl-von Karman velocity defect law (with the von Kármán constant

equal to 0.4) [24] . 

Integrating Eq. (9) by separation of variables, the sediment concentration can be written as: 

∫ C 

C 0 

1 

C 
d C = −w 

γ

∫ y 

y 0 

1 

ε m 

yy 

d y. (35)

A boundary condition is required to solve Eq. (35) . In this study, a reference level y 0 / L equal to 0.2 (top of the bed

form) is selected where the sediment concentration is C 0 . The integral of the reciprocal of the eddy diffusivity cannot be

calculated explicitly, therefore it is estimated by the trapezoidal rule as: 

ln 

(
C n 

C 0 

)
= −�y 

2 H 

w 

γU 

( 

UH 

ε m 

yy, 1 

+ 2 

n −1 ∑ 

i =2 

UH 

ε m 

yy,i 

+ 

UH 

ε m 

yy,n 

) 

, (36)

where �y is taken as the size of the lattice grid and equal to 1 mm for all cases. The sediment concentration and the

eddy diffusivity at level y n are denoted as C n and ε m 

yy,n , respectively, and y n = y n −1 + �y . The ratio between the downward

settling velocity ( w / U ) and upward turbulence induced diffusion ( γ ) is denoted by a weighting factor Z , given as below: 

Z = 

w 

γU 

. (37)

Substituting Eq. (37) into Eq. (36) , the distribution of sediment concentration, for a given Z value, can be calculated by: 

C n = C 0 exp 

[ 

−Z 
�y 

2 H 

( 

UH 

ε m 

yy, 1 

+ 2 

n −1 ∑ 

i =2 

UH 

ε m 

yy,i 

+ 

UH 

ε m 

yy,n 

) ] 

, (38)

As shown in Fig. 17 (b), using a uniform distribution of eddy diffusivity may underestimate the sediment concentration in

this case. At the middle depth ( y/H = 0 . 5 ), the sediment concentration based on the averaged eddy diffusivity is only about

half of that calculated from the raw data. Meanwhile, the best fit curve does capture the overall trend of the diffusivity and

results into a sediment concentration profile close to that based on the raw data, with a slight overestimation. In addition,

the sediment concentration resulting from the commonly used theoretical velocity and Reynolds shear stress profiles in

suspension theory (called as the flat-bed model [24] ) is generally higher than that calculated from the raw data due to the

highly overestimated eddy diffusivity. 
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Fig. 18. The total suspended load calculated directly from the numerical results and with the flat-bed assumptions at different friction factors with Z = 0 . 1 . 

The relative errors are shown in (blue) bars referring to the right hand side axis. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 19. Variation of the normalized TSL against (a) the friction factor f T and (b) the value of Z = w/ (γU) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Total suspended load 

The normalized TSL ( q s ) can be calculated by integrating the product C(y ) ̄u (y ) over the depth above the reference level

y 0 divided by the corresponding dimensional parameters: 

q s = 

1 

UC 0 H 

∫ y s 

y 0 

ū Cdy = 

N ∑ 

i =1 

ū i 

U 

C i 
C 0 

�y 

H 

, (39) 

where N represents the number of lattice nodes from the reference level to the free-surface ( y s ). Here, the mean flow

velocity U , the SSC at the reference level C 0 , and the flow depth H are chosen for normalization. Since the flow is in steady

state, the calculated q s at Position 4 should be similar for all the other positions. 

The normalized total suspended loads with the flat-bed assumptions ( q sf ) for Case 1–6 are compared to that calculated

from the raw simulation data ( q ss ) in Fig. 18 at different friction factors and with Z equal to 0.1. The relative errors,

calculated by (q s f /q ss ) − 1 , are also plotted in Fig. 18 . It can be seen that, for the calculation of TSL in turbulent flow over

bed forms, the adoption of simplified flat-bed assumptions will lead to an overestimation, which qualitatively agrees with

the experimental observations from Lyn [4] , despite the smaller relative errors in this work. The maximum relative error is

about 30% when f T = 0 . 26 in Case 4. 

The normalized TSL directly calculated from the numerical results, q ss , is plotted against the total friction factor f T in

Fig. 19 (a), for different values of Z . It can be found that, as the friction factor increases, the TSL also increases. This is due

to the fact that the highly frictional bed forms are able to disturb the flow more and create larger Reynolds shear stress

(see Fig. 16 (b)) and, hence, a larger eddy diffusivity which helps to enhance the capacity of the flow to carry sediments.

Therefore, the friction factor is an indirect measure of the mixing induced by the bed forms. 

Besides, the TSL is inversely proportional to Z , which is shown Fig. 19 (b). As Z becomes large, for example, when

the sediments are heavy, the downward settling of sediments will dominate over the upward diffusion, resulting into a

reduction in q ss . On the other hand, when Z is small, the diffusion mechanism becomes the dominating factor and more

sediments will diffuse into the fluid body, resulting in a large q ss . 
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Table 3 

Fitting results for a 1 , a 2 and a 3 . 

Fitting parameter Value Standard error 

a 1 0.0045 3.12E −4 

a 2 0.024 0.0014 

a 3 1.034 0.0275 

Fig. 20. Plot of Q against the friction factor f T . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results in Fig. 19 indicate that there is a self-similar behavior of q ss with respect to f T , depending on Z . This suggests

that there must be a scaling q ss Z 
a 3 that will collapse all the data set. By choosing a general law given by: 

Q = q ss Z 
a 3 = a 1 + a 2 f T , (40)

where the fitting parameters a 1 , a 2 and a 3 can be calculated by least squares. The results are presented in Table 3 and

Fig. 20 shows the collapsed data into a straight line with R 2 as high as 0.99. It indicates that there is a linear dependence

of the TSL q ss on the total friction factor f T , which is independent on the choice of the weighting factor Z . 

Although Eq. (40) reveals a simple relationship between the bed form roughness and the TSL, it only considers the

influence of advection and diffusion of suspended sediments in the fluid body, reflecting the altered flow pattern due to

the presence of bed forms. It should be noted that for the calculation of q ss in Eq. (40) , the SSC is normalized by C 0 (see

Eq. (39)) , which itself also depends on the bed form roughness [45–47] . Therefore, the effect of the bed form roughness on

the absolute value of the TSL is rather a complex problem and deserves further investigation. 

6. Conclusions 

The present study is one of the very first attempts to study turbulent flow over bed forms using the three-dimensional

lattice Boltzmann method. A Smagorinsky SGS model is incorporated into LBM to simulate high Reynolds number flows.

Besides, instead of using a simplified rigid free-slip boundary condition for the fluid-gas interface, a free-surface model is

applied. These models are verified by simulations of a two-dimensional driven cavity flow problem and a three-dimensional

dam break problem, in which the LBM results agree with the available CFD and experimental data. 

LBM is also successfully applied to simulate the turbulent flow over bed forms to investigate their influence on the

total suspended load, which may provide valuable insights to engineers, geologists and ecologists. The enhanced mixing

generated by the presence of bed forms induces larger diffusivities on the normal direction of the flow that will increase

the overall suspended load. We succeeded in quantifying this effect via the friction factor f T . It is found that the adoption

of the theoretical flat-bed assumptions generally overestimates the total suspended load of turbulent flow over bed forms

and the degree of overestimation depends on the friction factor. The relative error between the predictions based on the

flat-bed assumptions and the raw data from LBM simulations can be as high as 30%, based on a particular case in this

study. Besides, the total suspended load q s is found to be linearly proportional to the friction factor f T and nearly inversely

proportional to the weighting factor Z . 

In summary, the findings of this study have the potential to facilitate a more efficient and accurate estimation of the

total suspended load in natural rivers and man-made channels. Nevertheless, it still remains to be fully understood the

effect of the hydrodynamic parameters Re and Fr, which will alter the flow pattern significantly. In future works, numerical

simulations at other Reynolds numbers and Froude numbers will be carried out to further generalize the relationship

between q s , f and Z . 
T 
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