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Immersed granular collapsesmay encounter different flow regimes, such as free-fall (dry), fluid-inertial, and vis-
cous regimes, depending on column geometry, particle size, particle density, fluid viscosity, and many other pa-
rameters. Understanding the controlling parameters of these regimes is important for both industrial and
geological applications where grains and fluids coexist. It is also important to combine these parameters into di-
mensionless groups to guide down-scaled experiments and numerical simulations. In this work, we derive a set
of dimensionless numbers (i.e., Stokes number, density ratio, and Reynolds number) based on typical time scales
in the sedimentation of a sphere, and successfully verify the relevance of these numbers in determining flow re-
gimes andmaintaining dynamic similitude across length scales. The numerical method we use couples the com-
putational fluid dynamics and discrete element method (CFD-DEM), which allows a wide variety of particle size
and fluid viscosity to be chosen, keeping constant the Stokes number and density ratio. Quantitative data of front
propagation and energy evolution are presented to characterizeflowdynamics in different flow regimes. The col-
lapse exhibits a transition from sliding-dominant to suspension-dominant behaviors as the Stokes number de-
creases, which gives rise to distinct deposit morphology in different regimes. Our findings enhance the
understanding of inertial and viscous behaviors of immersed granular flows. The verified scaling rules and di-
mensionless parameters are of potential use in small-scale experiments and simulationswhere appropriate scal-
ing is essential.
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1. Introduction

Granular flows in fluids, or immersed granular flows, are ubiquitous
not just in industrial applications such as pharmaceutical production,
chemical engineering, and food production [1,2], but also in environ-
mental problems including submarine landslides and sediment trans-
port [3,4]. In the study of immersed granular flows, the collapse of
granular columns has received much attention as a test model due to
its simple configuration but rich (and unsteady) behaviors [5–9]. In a
column collapse test, an initial granular mass is suddenly put into mo-
tion by gravity, which then spreads and deposits over a certain runout
distance. In collapses where the influence of the ambient fluid is negli-
gible (i.e., dry granular collapse), the initial aspect ratio of the column
is known to be the major controlling parameter of the final runout
[10–13].

When the ambient fluid plays a role (i.e., immersed granular col-
lapse), more complicated behaviors that are not relevant in dry cases
may emerge, depending on the types of grains and fluids. As such, rele-
vant parameters for the immersed problem may include the aspect
ratio, grain size, packing density, andfluid viscosity. For instance, our re-
cent work [9] reported a significant fluid-inertial effect (i.e., fluid eddies
erode the surface of the granular deposit) in underwater granular col-
lapses especially when the initial aspect ratio is high. By varying particle
size, an earlier study [7] found that the collapse dynamics of an under-
water column consisting of coarse grains is mainly described by the bal-
ance between horizontal pressure gradient and Coulomb friction, while
for finer particles, hydrodynamic fluid pressure and drag forces become
dominant, leading to dense-suspended granular flows. Regarding pack-
ing density, a series of laboratory experiments [6] showed that variation
of the initial packing density can give rise to significantly different flow
regimes for immersed granular collapses. In particular, the collapse of a
densely-packed column is much delayed by the negative excess pore
pressure generated during the dilation of the granular skeleton, while
a loose packing leads to fast dynamics due to the development of posi-
tive excess pore pressure during contraction [6]. Such evolutions of ex-
cess pore pressure resulting from dense and loose packings were
presented with more details in a numerical study [14]. For the effect
of fluid viscosity, numerical simulations with a coupled fluid-particle
method [8] showed that the mobility of particles may be largely en-
hanced by contact lubrication in the fluid-inertial regime, and a transi-
tion from inertial to viscous regimes occurs as fluid viscosity increases.
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It remains a challenge to give a full picture of the flow regimes en-
countered by immersed granular flows. Three distinct flow regimes
have been reported previously in granular avalanches [15,16], namely,
the free-fall (grain-inertial), fluid-inertial, and viscous regimes, for
which two dimensionless numbers, i.e., the Stokes number [15] and
the particle-fluid density ratio, are proposed to be the controlling pa-
rameters. In recent studies of granular and suspension rheology
[17,18], a viscoinertial number is proposed to combine the inertial num-
ber [19,20] and viscous number [17] that control the dynamics of gran-
ular flows in dry and suspension regimes, respectively. While the
aforementioned findings were mainly established with the configura-
tion of periodic or steady granular flows, the flow regimes in a transient
granular system (such as the granular collapse problem to be addressed
in this work) are still poorly characterized, especially in terms of rele-
vant dimensionless numbers.1 As one of the limited studies in the liter-
ature, Topin et al. [8] found grain-inertial, fluid-inertial, and viscous
regimes when simulating granular collapses in air, water, and a more
viscous fluid, respectively.

The aim of the current work is to characterize the flow dynamics of
granular collapses in a variety of regimes and, more importantly, to find
a set of dimensionless numbers that govern the different behaviors of
immersed granular flows. To this end, we derive different dimension-
less numbers based on the typical time scales related to the motion of
a single sedimenting sphere in a fluid, inspired by a fewprevious studies
[15,22], and perform a series of test cases with coupled continuum-
discrete simulations to verify the relevance of these dimensionless
numbers against the collective dynamics of themore complicated gran-
ular system.

The paper is organized as follows. In Section 2, we describe the for-
mulation of the relevant time scales and dimensionless numbers as the-
oretical background. In Section 3, we present the details of our
numericalmethod,model setup, and test plan. The results are presented
and discussed in Section 4. Conclusions are drawn in Section 5.

2. Theoretical background

This section provides theoretical background for our analysis. We
first present different flow regimes encountered by a sedimenting
sphere and derive the dominant time scale for each regime (Section
2.1). The time scales are then used to formulate major dimensionless
numbers in Section 2.2. In Section 2.3, we describe the scaling of particle
contact parameters in a simple collision scenario.

2.1. Time scales in different flow regimes

We start with a simple elementary scenario, i.e., the sedimentation
of a single particle in a fluid. The motion of the particle is governed by

π
6
d3pρp

dv
dt

¼ π
6
d3pΔρg−Fd ð1Þ

where v is particle velocity, dp is particle diameter, ρp is particle density,
Δρ = ρp − ρf is the density difference between the particle and fluid,
with ρf being fluid density, g is the gravitational acceleration, and Fd is
drag force. The first term on the right-hand side represents a combina-
tion of gravity and buoyancy forces (or, the buoyant weight). The drag
force, Fd, may take different forms for different flow regimes [23]. In
the following, we discuss three distinct regimes, namely, the free-fall
(dry), viscous, and inertial regimes, which are respectively denoted by
letters F, V, and I in the notation.
1 After completion of this work, we become aware of a recent research article [21] that
presents a similar idea of using dimensionless numbers to explore the flow regimes of im-
mersed granular collapses.We give amore detailed discussion on thiswork in Section 4.5.
2.1.1. Free-fall regime
In the free-fall regime, which typically refers to dry cases, drag force

is negligible (Fd ≈ 0). By solving Eq. (1), one can easily obtain a charac-
teristic time

τ F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρpdp
Δρg

s
¼

ffiffiffiffiffiffiffiffi
2dp
g0

s
ð2Þ

which is the time for the particle to travel a distance of dp from rest. For
generality, we do not drop the term ρp/Δρ, such that the process can be
interpreted as a free fall under the reduced gravity due to buoyancy,

g0 ¼ Δρ
ρp

g ð3Þ

2.1.2. Viscous limiting regime
In the viscous regime, the Stokes's drag model can be obtained ana-

lytically [24],

Fd ¼ 3πdpμ f v ð4Þ

which expresses Fd as a linear function of v. Substituting Eq. (4) into
Eq. (1), the viscous terminal velocity, vtV, at which the reduced gravity
of the particle is counterbalanced by the viscous drag force, and the vis-
cous characteristic time, τV, can be obtained (see Appendix A) as

vtV ¼ Δρgd2p
18μ f

ð5Þ

τV ¼ ρpd
2
p

18μ f
ð6Þ

2.1.3. Inertial limiting regime
In the fluid inertial limit, the drag force (inertial fluid force) is a qua-

dratic function of velocity,

Fd ¼ 1
2
Cdρ f v

2A ¼ π
8
d2pCdρ f v

2 ð7Þ

where Cd is drag coefficient and A is the cross-sectional area of the
sphere, i.e., A= πdp2/4. Substituting Eq. (7) into Eq. (1) yields the inertial
terminal velocity and characteristic time (see Appendix B), respectively,

vtI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gdp
3Cd

Δρ
ρ f

s
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gdp

Δρ
ρ f

s
ð8Þ

τI ¼
ρp

Δρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gdp
3Cd

Δρ
ρ f

s
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dpρ2

p

ρ fΔρg

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dp
g0

ρp

ρ f

s
ð9Þ

Note that the approximate equality above is achieved by assuming
Cd = 2/3, which is reasonable because Cd is known to plateau at the in-
ertial limit [25]; a similar treatment is done in [15].

2.1.4. Macroscopic time scales
Three elementary time scales are formulated so far for the three flow

regimes; τF is the time required for a particle to fall a distance dp from
rest under gravity, while τV and τI are characteristic times for a
sedimenting particle to reach terminal velocity under viscous and iner-
tial fluid forces, respectively.

For an assembly of particles, macroscopic time scalesmay be defined
by considering the initial column height hi. For the free-fall regime, the



Fig. 1. Flow regimes defined in (St, rρ) space. The solid lines are boundaries experimentally
identified by Courrech du Pont et al. [15], representing St = 10, rρ = 4, and Re= 2.5. The
dotted lines are conceptual boundaries defined by Cassar et al. [16], representing St = 1,
rρ = 1, and Re = 1. Markers refer to the test cases listed in Table 1: Circles: FL, FM, FS
(from right to left); Triangles: IL, IM, IS (overlapped); Squares: VL, VM, VS (overlapped).
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time scale over a fall distance of hi is simply

t F ¼
ffiffiffiffiffiffiffi
2hi
g0

s
ð10Þ

which has no dependence on dp, consistent with the previous observa-
tions in granular avalanches [15].

For the viscous and inertial limiting regimes, we define the macro-
scopic time scales respectively as

tV ¼ hi=vtV ¼ 18μ f hi

ρpd
2
p

ð11Þ

tI ¼ hi=vtI ¼ hi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gdp

Δρ
ρ f

s
ð12Þ

The macroscopic time scales presented above will be used for nor-
malization in our later analysis for different flow regimes in Section 4.

2.2. Dimensionless numbers and phase diagram

The macroscopic flow behaviors are controlled by a set of dimen-
sionless numbers, which may be defined as the ratios of different (ele-
mentary) time scales, thus signifying the relative dominance of one
mechanism over another. Following the definition in [15,16], we have
the Stokes number

St ¼ τV
τ F

¼ ρpd
2
p

18μ f

ffiffiffiffiffiffiffiffi
g0

2dp

s
ð13Þ

which is the ratio of the time scales characterizing the viscous sedimen-
tation and free fall, and the density ratio

rρ ¼ τI
τ F

¼
ffiffiffiffiffiffi
ρp

ρ f

s
ð14Þ

which is the ratio of the time scales characterizing the fluid-inertial sed-
imentation and free fall. Note that Eq. (14) contains only ρp and ρf with
the assumption of Cd = 2/3.

The third dimensionless number is the Reynolds number,

Re ¼ τV
τI

¼ ρpd
2
p

18μ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0

2dp

ρ f

ρp

s
¼ St

rρ
ð15Þ

which represents the ratio between the characteristic time scales of vis-
cous and fluid-inertial sedimentations. It can be interpreted as the ratio
of the other two numbers.

Dimensionless numbers are essential for dynamic similarity when
performing small-scale numerical and physical modeling. For instance,
it might be relevant to scale down a large-scale landslide to a small-
scale column collapse experiment by keeping St and rρ (thus Re) the
same. Using Eq. (13) and assuming densities and gravity to be invariant
across scales, we have the following scaling rule,

μ f1

μ f2
¼ dp1

dp2

� �3
2

ð16Þ

where the subscripts 1 and 2 denotes two arbitrary length scales.
The dimensionless numbers can also be used to define the bound-

aries between different flow regimes. As shown in Fig. 1, Courrech du
Pont et al. [15] found inwet granular avalanches that the boundaries be-
tween the free-fall, viscous, and inertial regimes are St=10, rρ=4, and
Re= 2.5. In a later study of immersed granular chute flows, Cassar et al.
[16] defined the three regimes conceptually with St = 1, rρ = 1, and
Re = 1. In our later analysis, we design the test cases in such a way
that they are relevant to some realistic situations, and they fall into
the three flow regimes defined in the literature (see our test plan in
Section 3 and Fig. 1).

2.3. Scaling of particle contact properties

While the time scales discussed above are ofmajor relevance to flow
regimes in a coupled fluid-particle system, it is necessary to understand
the scaling of particle contact properties that may alter the dynamics of
a granular flow.We establish such a scaling by considering the collision
of two identical particles. For simplicity, a linear spring-dashpot contact
law [26,27] is assumed first and an extension to the Hertz model is
discussed later. Let δ be the normal overlap of the two particles in colli-
sion,whichhavemassmp=ρpπdp3/6, stiffness k anddamping coefficient
γ, we have the following equation of motion in terms of the overlap dis-
tance,

meff
€δ ¼ kδþ γ _δ ð17Þ

where meff = mp/2 is the effective mass for two identical particles.
Consideringmaterial properties (mp, k, γ) and gravity (g) to be basic

quantities and applying length scale dp and time scale
ffiffiffiffiffiffiffiffiffiffi
dp=g

p
, we obtain

the scalings,

~δ ¼ δ
dp

;
_~δ ¼

_δffiffiffiffiffiffiffiffi
gdp

q ;
€~δ ¼

€δ
g

ð18Þ

where the tilde symbol indicates normalized variables. The dimension-
less equation of motion is then written as

€~δ ¼ 2kdp
mpg

~δþ 2γ
mp

ffiffiffiffiffi
dp
g

s
_~δ ð19Þ

We can define ~k and ~γ as dimensionless stiffness and damping pa-
rameter, which have the forms

~k ¼ 2kdp
mpg

∝
k

d2p
; ~γ ¼ 2γ

mp

ffiffiffiffiffi
dp
g

s
∝

γ

d5=2p

ð20Þ



Fig. 2. Setup and notation. (a) The three-dimensional model in CFD-DEM (final state). The
dashed lines indicate the initial column. The computational domain is filled with fluid.
(b) Definition of front position xf and top height yt at an arbitrary time.

Table 1
Test plan. For all cases, ρp = 2650 kg/m3, μp = 0.5, e= 0.5, ν = 0.24.

Regime ID dp
(mm)

E (×107

Pa)
μf
(mPa⋅s)

ρf
(kg/m3)

St rρ Re

Free-fall FL 5 125 0.18 1.2 6403 46.99 136.25
FM 1 25 0.18 1.2 572.69 46.99 12.19
FS 0.2 5 0.18 1.2 51.22 46.99 1.09

Inertial IL 5 125 11.2 1000 8.12 1.63 4.99
IM 1 25 1 1000 8.14 1.63 5.00
IS 0.2 5 0.09 1000 8.13 1.63 5.00

Viscous VL 5 125 1500 1000 0.06 1.63 0.037
VM 1 25 134 1000 0.06 1.63 0.037
VS 0.2 5 12 1000 0.06 1.63 0.037
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which show that k and γ have to be scaled properly with dp to achieve
dynamic similarity. For the linear spring-dashpot contact model, the
scaling rules for stiffness and viscous damping are

k1
k2

¼ dp1
dp2

� �2

;
γ1

γ2
¼ dp1

dp2

� �5
2

ð21Þ

with the subscripts 1 and 2 denoting two arbitrary length scales.
The scaling of material properties can be extended to Hertz-type

contact models, where k and γ are no longer constants. There exist dif-
ferent Hertz models in the literature, which differ mainly in the form of
viscous damping [26,28,29]. Our simulations are performed with
the formulation given in [30], which conveniently takes measurable
material properties (e.g., Young's modulus E and the coefficient of resti-
tution e) as input parameters. The details of this model is given in
Appendix C.2, from which one can easily show that, for two identical

particles, k∝E
ffiffiffiffiffiffiffiffi
dpδ

p
∝ Edp and γ ∝ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
ffiffiffiffiffiffiffiffi
dpδ

p
d3p

q
∝ β

ffiffiffi
E

p
d2p, where β is a di-

mensionless function of e,

β ¼ lneffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2eþ π2

p ð22Þ

Combining with the scalings in Eq. (20) and Eq. (21), we have

E1
E2

¼ dp1
dp2

; e1 ¼ e2 ð23Þ

where the subscripts 1 and 2 denotes two length scales, indicating that
two such granular systems have the same dimensionless elastic and
damping properties if the Young's modulus scales with length, while
the coefficient of restitution remains constant. One can easily show
that the tangential contact properties follow the same scalings (from
Appendix C.2). Note that our scaling rules are obtained based on the
specific Hertz model in Appendix C.2; different Hertz models may lead
to different scalings especially for the viscous damping property (e.g.,
see [31]). Note also that since our results show a negligible role played
by particle-scale dynamics, the details of the contactmodel is not crucial
to the overall dynamics of the current coupled fluid-particle system.

3. Methodology

We adopt a numerical method that couples the discrete element
method (DEM) and the computational fluid dynamics (CFD), known as
CFD-DEM. It has the advantage of solving fluid-particle interactions at a
lowcomputational cost, allowingefficient three-dimensional simulations
(see Appendix C for a detailed description). Recently, we have validated
the CFD-DEM framework against multiple benchmark problems in [32]
and further used it to simulate dry and underwater granular collapses
in [9]. The model setup and test plan of this study are given as follows.

3.1. Model setup

Fig. 2(a) illustrates the setup of our numerical experiments. The ini-
tial packing is generated by pouring particles into the simulation box,
cycling to equilibrium, and trimming the resultant column at a desig-
nated height. Each granular column consists of a slightly polydisperse
packing of particles (i.e., a Gaussian distribution with mean diameter
dp and standard deviation 0.1dp). Note that dp is a variable to be
discussed later along with Table 1. Since the focus of the current study
is the different flow regimes emerging with a variety of particle size,
fluid viscosity, and fluid density, all columns have a consistent geome-
try. The initial length is li = 30dp and initial height is hi = 30dp, hence
an aspect ratio of 1; the influence of varying aspect ratios has been in-
vestigated in [9]. The initial bulk packing density for all cases is around
0.56.
The computational domain is a rectangular box of length L=150dp,
height H = 80dp, and width W = 10dp, filled with fluid. Periodic
boundary conditions are imposed in the width direction in both CFD
and DEM to represent a quasi-two-dimensional configuration, and we
have verified that the domain size is sufficient to avoid boundary ef-
fects. The coordinate system of the quasi-two-dimensional problem is
shown in Fig. 2(b), with the front position xf and top height yt marked
for an arbitrary time t after the release of the initial mass. In CFD, non-
slip boundary conditions are applied to all other walls, including the
bottom of the box. In DEM, walls are frictional with the same coeffi-
cient of friction as particles, and the bottom is roughened by a layer
of immobile base particles (diameter db = dp) with a triangular close
packing [33].

Thefluid properties used in CFD, including density ρf and viscosity μf,
are given in Table 1. In DEM, the following model parameters apply to
both bulk and base particles: density ρp = 2650 kg/m3, Poisson's ratio
ν=0.24, the coefficient of friction μp =0.5, and the coefficient of resti-
tution e = 0.5. The Young's modulus E is a variable properly scaled ac-
cording to Section 2.3 (see Table 1). Note that relatively low values of
E ranging from 5 × 107 Pa to 1.25 × 109 Pa (while the laboratory value
for glass beads is about 5×1010 Pa) are deliberately chosen due to the
computational cost especially for very fine particles (dp = 0.2 mm).
Nevertheless, we have tested with dp = 1 mm that such a reduction of
E has a negligible influence for all ambient fluids used (see Appendix D).

The size of computational cells in CFD is 2dp; the numerical conver-
gence towards this resolution has been verified. The time steps in DEM
and CFD are 10−6 s and 10−5 s, respectively, such that coupling is made
every 10 DEM cycles [32,34].
3.2. Test plan

In order to test the relevance of the derived dimensionless numbers
St, rρ, and Re in different flow regimes, as well as the scaling rules given
in Section 2, we design three sets of numerical tests corresponding to
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the free-fall, inertial, and viscous regimes (see Table 1). In each regime,
we have three sub-cases, involving respectively large-, medium-, and
small-sized particles, with a controlled Stokes number (by adjusting
fluid viscosity according to Eq. (16)) and density ratio. Young's modu-
lus is scaled with particle size according to Eq. (23), while other parti-
cle properties (including density) remain constant. The case ID
consists of two letters, indicating the specific combination of flow re-
gime (F for free-fall, I for inertial, and V for viscous) and particle size
(L for large, M for medium, and S for small). The calculated values of
St, rρ, and Re listed in the table are also used to locate the nine cases
in Fig. 1.

In the free-fall regime (or, dry cases), we use the properties of air
to estimate St and rρ, although the simulations are performed only in
DEM following the convention in the literature [13,35–38]. As we do
not scale the properties of air with dp, the value of St varies in the
free-fall regime (Table 1); nevertheless, the specific value of St has
no effect in this regime because only gravity is the dominant
mechanism.

In the inertial and viscous regimes, where an actual ambient fluid is
present, we fix the fluid density to ρf =1000 kg/m3, but adapt viscosity
according to Eq.(13) or Eq. (16) to control a constant combination of St
and rρ. As listed in Table 1, the values of St are around 8.13 and 0.06 in
the two limiting regimes, respectively. In the inertial regime, for in-
stance, a column with larger particles (dp = 5 mm) has to be put in a
more viscous fluid (μf = 11.2 mPa⋅s), which is similar to the oil used
in [6], such that it behaves similarly to the smaller particles (dp = 1
mm) immersed in water (μf = 1 mPa⋅s). This theoretical prediction
of dynamic similarity is to be tested in our simulations in the next
section.
4. Results and discussions

In this section, we verify the dynamic similarity for each combina-
tion of Stokes number and density ratio. The phenomenological results
are presented in Section 4.1 and Section 4.2, where we observe three
different collapse dynamics in differentflow regimes. Then, quantitative
results are shown in Section 4.3 and Section 4.4. The results of a recent
similar work [21] are discussed in Section 4.5.
Fig. 3. Sequences of snapshots for the three medium-sized cases with dp =1mm, from top to b
instances t/tF= 0.2,1,1.8,5. (e–h) Case IM at t/tI = 0.1,0.5,0.8,2. (i–l) Case VMat t/tV=0.02,0.1,0
show the velocity vectors for a central slice of the fluid, with the scale bars shown in (e) and (
4.1. Phenomenology

Fig. 3 presents a sequence of snapshots illustrating the flow charac-
teristics of each flow regime, that is, free-fall (first row), inertial (second
row), and viscous (third row). The cases with medium-sized particles
(dp=1mm) are taken for example. For each case, we select four typical
moments corresponding to the initial, fast-collapse (i.e., peak vertical ki-
netic energy), fast-spread (i.e., peak horizontal kinetic energy), andfinal
states; the evolution of kinetic energy can be found in Section 4.4.

In general, the free-fall (FM) and inertial (IM) cases exhibit a similar
process,where fracturing occurs from the top-right corner and a layer of
mobilized particles slide down a self-formed slope. The location of the
fracture surface, indicated by the color map of particle velocities, is sim-
ilar in both cases; the approximate slope of the flowing layer is related
to the frictional property of particles [39]. As the flowpropagates down-
slope, the flowing layer becomes shallower, forming a thin tip in the
frontal region. Different features in the FM and IM cases may develop
from this stage onwards. In case FM, high velocities are more concen-
trated near the front, and a small number of energetic particles become
detached from the main flow (Fig. 3(c) and Fig. 3(d)). By contrast, the
front in case IM is thicker, and no particle detachment is observed. The
thicker front in case IM leads to a slightly concave surface morphology
in the final deposit, which differs from the nearly triangular final
shape in case FM. A vortex is generated in the background fluid of
case IM (indicated by arrows), which propagates in the major flow di-
rection of the particles. The horizontal propagation of the fluid eddy is
a signature of the dominance of fluid inertia.

In the viscous case (VM), we observe a remarkably different phe-
nomenon. Instead of the fracturing and sliding of a shear layer of parti-
cles, the particles near the top-right corner tend to fall towards the
bottom. The falling particles are suspended by the ambient fluid,
forming a region of relatively uniform velocities (see the distribution
of the bright color in Fig. 3(j)), which is a viscous behavior due to the
very small Stokes number (St = 0.06). Unlike the fast propagation of
the leading edge of the initial column in the FM and IM cases, the toe
of the initial column in the VM case remains nearly stagnant in the
first few instants of time, and the vertical motion is more significant
than the horizontal spreading. The process of this viscous collapse is
more dynamically presented in Fig. 4 with flow-depth profiles selected
ottom, representing the free-fall, inertial, and viscous regimes. (a–d) Case FM at four time
.18,0.6. Color bars indicate themagnitude of particle velocities with the unit ofm/s. Arrows
i), respectively (unit: m/s).



Fig. 4.Dynamic process of the viscous collapse (case VM). Lines are flow-depth profiles at
t/tV = 0,0.1,0.15,0.2,0.25,1.
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at several consecutive moments. The profiles are generated by evaluat-
ing local solid fractions in a set of virtual grids; solid fraction smaller
than a threshold indicates the pure fluid phase. The duration of the vis-
cous collapse is significantly longer (about 8 s) than the other two cases
(within 1 s). In the meantime, a vortex is generated in the viscous fluid,
which seems to recirculate slowly over a large area (Fig. 3(l)), instead of
propagating in the horizontal direction (Fig. 3(h)). Note the scale bars in
Figs. 3(e) and 3(i); the scale is 5 times larger in case IM than in case VM.

The different flow characteristics in the three regimes result in dif-
ferent deposit morphology. A comparison of the final deposits is pre-
sented in Fig. 5. While the FM and IM cases are only distinguishable in
the frontal region (sharper in case FM), the VM case has a different de-
posit shape (shorter, thicker, and concave). By coloring particles accord-
ing to their initial position (see the inset of Fig. 5(a)), the distinct
features of final deposition can be associated with the different domi-
nance of fracturing and falling behaviors. Note that we color the initial
column as annular zones to highlight the different types of motion of
the top-right corner. In the fracturing case (i.e., Fig. 5(a) and Fig. 5(b)),
the particles in the final frontal region come from the entire leading
edge of the initial column, hence a mixture of red and dark gray colors.
The dark gray particles invade the bottom of red particles, showing the
tendency of fracturing and sliding (the fracture surface is approximately
within the dark gray region). By contrast, in the falling-dominant vis-
cous collapse (i.e., Fig. 5(c)), the deposit front is occupied by particles
originating from the corner. The boundary between the red and dark
gray regions indicates how the particles from the corner settle and
Fig. 5. Final deposit morphology of cases (a) FM, (b) IM, and (c) VM. Particles are colored
according to their initial positions (Inset of (a)). Light gray: inner circle; Gray: middle ring;
Red: corner. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
fold the particles from the lower part, leading to the concave deposit
morphology.

4.2. Dynamic similarity

Nextwe test the dynamic similarity over different length scales with
controlled Stokes number, density ratio, and scaled Young'smodulus. In
Fig. 6, the results of all nine test cases listed in Table 1 are presented. The
time instances are the same as those in Fig. 3, but now we overlap the
flow-depth profiles of the three sub-cases of large, medium, and small
particles. Excellent agreement is observed in all three regimes. Note
that the cases with the same St and rρ (and scaled Young's modulus)
are not identical due to a randomized difference introduced in the gen-
eration of initial packings.2 It is important to see that although we also
scale Young's modulus with particle size, its influence is rather minor
according to our discussion in Appendix D. Therefore, the agreement
in Fig. 6 confirms that the dynamics of the present system is indeed con-
trolled by the Stokes number and density ratio (but not particle
properties).

4.3. Quantitative data: front position and flow thickness

Fig. 7 presents the quantitative data regarding front position and
flow thickness, which are commonly used to characterize the dynamics
of column collapses in the literature [10–12]. The rawdatawith physical
units are presented in the inset graph of each subplot for reference, but
our analyses below focus on the main graphs where dimensionless
quantities are used. In particular, we made the travel distance xf − li
and fall distance yt− hi dimensionless by applying li and hi as the length
scales, respectively. Time t is normalized by themacroscopic time scales,
tF, tV, and tI, for the three regimes respectively, which are derived in
Section 2.1.4. In each subplot, an error bar is used to show themaximum
uncertainty of the numerical results, which is obtained by running five
repeated simulations with varying random seeds during the generation
of the initial packings (for dp = 1 mm only). In general, the results
across different scales collapse onto a single master curve in each sub-
plot, showing again the dynamic similarity achieved by controlling the
relevant dimensionless numbers.

The upper row of Fig. 7 presents the front propagation of the three
regimes, i.e., free-fall, inertial, and viscous, respectively, from left to
right. In Fig. 7(a), the three dry cases, FL, FM, FS, are shown as the
solid, dashed, and dotted lines, respectively. A nearly constant-velocity
stage can be observed (i.e. a constant slope between t/tF = 1 and 3),
which agrees with the previous findings in the literature [7,9–11]. The
curves become non-smooth near the stoppage phase, owing to the de-
tachment of particles as seen in Fig. 3(d). Note that we exclude these
isolated particles when determining xf. Although the three lines deviate
slightly from each other in the final stage, the deviation is within the
maximum error bar caused by the simulation uncertainly itself. In addi-
tion, the dimensionless duration for these flows to arrest is around 3.5,
which is close to the value of 3.3 in the literature [10,11].

In the fluid-inertial cases (Fig. 7(b)), the dimensionless front posi-
tion evolves similarly compared to the dry cases in Fig. 7(a). Amajor dif-
ference is that it approaches the final stage more smoothly and the
uncertainty (error bar) is smaller, since the discrete behaviors of parti-
cles in the front region is largely suppressed in the immersed cases
(see Fig. 3(g)). The dimensionless duration of inertial collapses is
about t/tI = 2.5.

In the viscous cases (Fig. 7(c)), the propagation of front position has
a different feature. Twomain stages can be observed, with a steep accel-
eration stage and a slowly-evolving final stage. The first stage corre-
sponds to the falling process noted in Fig. 3(j), while the second stage
2 Particles are inserted to the computational domain at a controlled insertion rate,
which is not scaled inour practice. Nevertheless, the influence causedby a randomized ini-
tial packing is minor; see error bars in Fig. 7.



Fig. 6. Flow-depth profiles showing the dynamic similarity of the three sub-cases of large, medium and small particles in each regime. (a–d) Free-fall regime; four dimensionless time
instances t/tF = 0.2,1,1.8,5. (e–h) Inertial regime; t/tI = 0.1,0.5,0.8,2. (i–l) Viscous regime; t/tV = 0.02,0.1,0.18,0.6.
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reflects the fact that the viscous collapse come to a final halt very slowly
(i.e., creeping regime). Note that in the viscous regime, the definition of
the “front” may be ambiguous, because the leading point of the flow is
no longer the point propagating at the bottom, but rather the further-
most corner suspended in the fluid (see e.g. Fig. 3(j)). Here we still de-
fine xf as the point at which the flow-depth profile touches the bottom;
we have verified that using the furthermost point as an alternative def-
inition of xf only introduces a systematic change for early stages but
does not affect our discussion.

In the second row of Fig. 7, the fall distance of the top surface, yt −
hi, which is normalized by hi, is plotted as a function of dimensionless
Fig. 7. Temporal evolutions of front position (xf) and topheight (yt), from left to right, representi
and dotted lines refer to the cases of large,medium, and small particles, respectively. The error ba
cases),which are only visible at the deposition stage. (a–c) The normalized travel distance (xf−
(d–f) The normalized fall distance (yt − hi)/hi as a function of the normalized time. Insets: yt −
time. It is notable that the curves (especially for larger scales) are
largely stepwise, which is attributed to the slow decrease of flow
thickness (in the vicinity of x = 0) close to an inherent microscopic
length scale set by the particle size (dp/hi = 0.033 in all cases); in-
deed, the height of each step is roughly around the particle size
(e.g., about 0.03 for case FL in Fig. 7(d)). The size of the error bars
in Figs. 7(d-f) is larger for the same reason. All three curves in each re-
gime tend to converge after normalization, with discrepancies smaller
than the measurement errors. The drop of height in Fig. 7(f) is signif-
icantly less than those in Figs. 7(d) and (e), indicating a clearly thicker
deposit in the viscous cases.
ng the free-fall, inertial, and viscous regimes, respectively. In all subgraphs, the solid, dashed
rs show themaximum standarddeviations causedby varying random seeds (in dp=1mm
li)/li as a function of the normalized time. Insets: xf− li as a function of twith physical units.
hi as a function of t with physical units.



Fig. 8. Evolutions of normalized kinetic energy (Ek/E0) in the vertical and horizontal
directions. (a) Free-fall regime. (b) Inertial regime. Inset: Kinetic energy of fluid.
(c) Viscous regime. Inset: Kinetic energy of fluid.
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4.4. Quantitative data: kinetic energy

The temporal evolution of kinetic energy is commonly used to un-
derstand the dynamics of granular collapses [8,9,13,35,37,39,40]. Here
we consider the “partial” kinetic energy in x and y directions for both
the fluid and particulate phases. Partial kinetic energies are calculated
from the horizontal and vertical velocity components [8,13,37]. For par-
ticles, we have

Epkx ¼
1
2

Xnp

i¼1

miu2
i ð24aÞ

Epky ¼
1
2

Xnp

i¼1

miv2i ð24bÞ

wheremi is the mass of particle i, ui and vi are velocities of particle i in x
and y directions, respectively, and np is the total number of particles. For
fluid, we have

E f
kx ¼

1
2
Vfc

Xnfc

i¼1

α fρ f u
2
f ð25aÞ

E f
ky ¼

1
2
Vfc

Xnfc
i¼1

α fρ f v
2
f ð25bÞ

where uf and vf are local fluid velocities in x and y directions, respec-
tively, αf is porosity, Vfc is the volume of a fluid cell, and nfc is the total
number of fluid cells.

Since the collapse of a column is driven by the drop of potential en-
ergy of particles, the initial potential energy E0 is used to normalize the
kinetic energy, which is defined as

E0 ¼
Xnp

i¼1

mighci ð26Þ

where hci is the initial height of the centroid of particle i.
Fig. 8(a) shows the normalized partial kinetic energy (of particles)

for the free-fall regime, with black and gray colors representing the x
and y directions respectively, and different line types indicating differ-
ent particle sizes. After normalization, the energy evolution collapses
for different particle sizes; small discrepancies exist near the peaks,
which might stem from the randomized difference in the generation
of initial packings, as discussed with Figs. 6 and 7. Apart from this
small difference, it is observed that both Ekx

p and Eky
p increase simulta-

neously from the beginning, with the latter evolving slightly faster but
the former towards a higher peak. This behavior corresponds to the
shear flow along the self-formed slope discussed in Fig. 3(a), showing
that the horizontal spreading is dominant over the vertical movement.
Both Ekx

p and Eky
p are entirely dissipated after t/tF = 5.

Fig. 8(b)shows the energy evolution of the three fluid-inertial cases.
Particle kinetic energies are presented in themain axes, which exhibit a
similar trend with the curves in Fig. 8(a). The absolute values of peak
Ekx
p and Eky

p are roughly half of those in Fig. 8(a), owing to the energy
transmission via fluid-particle interactions and the viscous dissipation
in the fluid. In the inset of Fig. 8(b), the partial fluid kinetic energies
are presented. It can be observed that the particle size has nearly no in-
fluence on the normalized fluid energy. The peak of Ekxf is higher than
that of Ekyf , consistent with the more profound horizontal motion of
the fluid. It takes much longer time for the energy to dissipate in the
fluid than in the particles.

For the three viscous cases (Fig. 8(c)), two major differences can be
observed. Firstly, the particle kinetic energy in the vertical direction, Ekyp ,
reaches a higher peak than Ekx

p , in contrast to the case in the free-fall and
inertial regimes. This is a distinct feature of the viscous collapses, where
the vertical fall ismore dominant than the horizontal spread (see Fig. 4).
Secondly, the magnitudes of Ekx

p and Eky
p are significantly small in

the viscous regime (creeping motions), while the fluid energies,
Ekx
f and Eky

f , are slightly higher than Ekx
p and Eky

p. The latter is attributed
to the fact that a large volume of fluid is mobilized, which remains in
a slow recirculation (see the arrows in Figs. 3(k-l)). The fluid energies
are well scaled for the three particle sizes.

4.5. Discussion on a recent work

During the preparation of this paper, an experimental study has
been published regarding the flow regimes in immersed granular col-
lapses [21]. Similar to the way we establish the phase diagram in Fig. 1
(b), Bougouin et al. [21] followed the same idea in [15] to formulate
Stokes number and density ratio based on a single-particle scenario
and test the relevance of these numbers in immersed granular collapses.
From the snapshots reported in [21], it is interesting to see similar re-
sults in the dry and fluid-inertial regimes when the aspect ratio is 1,
and also the largely suppressed horizontal spreading in the viscous re-
gime (especially when the aspect ratio is high).

While we use a coupled fluid-particle method in this research,
Bougouin et al. [21] performed laboratory experiments and focused
on densely-packed columns (the packing density is around 0.64,
much higher than our average value of 0.56), which are known to ex-
hibit a delay of collapse [6]. The results in [21] suggest that except
packing density, the Stokes number also controls the triggering time,
which tends to increase when St decreases. In fact, a similar delay of
spreading is also observed in our viscous cases (see Fig. 8(c)) in
spite of the relatively loose initial packing. Another focus of [21] is
the effect of aspect ratio. It is well known in granular collapse prob-
lems that runout distance is a piecewise power-law function of the
initial aspect ratio [6,10], and Bougouin et al. [21] showed such scaling
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functions for a variety of St. Our recent work [9] also studied the
runout scaling of underwater granular collapse in detail, where we re-
lied on energy arguments (as we have access to particle and fluid ve-
locities in our simulations) to explain the piecewise power-law scaling
functions. Bougouin et al. [21] further provided a modified phase dia-
gram for Fig. 1, where the initial column height is incorporated. It is an
interesting future direction to compare our results with the data re-
ported in [21], and utilize the numerical method to study local vari-
ables (e.g., packing density, velocity, shear rate, stress tensor) that
are relevant to granular and suspension rheology [17,18].

5. Concluding remarks

In this paper, we study the flow regimes and dynamic similarity dur-
ing the collapse of immersed granular columns.We first derive different
dimensionless numbers (Stokes number St and density ratio rρ) based
on typical time scales related to the motion of a sedimenting sphere,
and then test the relevance of these dimensionless numbers with
coupled continuum-discrete simulations. With St ranging from 0.06 to
6403 and rρ from 1.63 to 46.99, our results show three regimeswith dif-
ferent flow dynamics, i.e., free-fall, fluid-inertial, and viscous regimes,
which can be well determined by a phase diagram combining St and
rρ. The collapse dynamics exhibit a transition from sliding-dominant
to suspension-dominant behaviors as St decreases towards a small
value. In each regime, we achieve dynamic similarity regarding front
position and flow thickness for three different particle sizes, by properly
scaling fluid viscosity according to the Stokes number. The dynamic
similarity confirms that St is the major controlling dimensionless pa-
rameter for immersed granular collapses, while particle-scale dynamics
play a minor role in the overall flow behaviors. The understanding rep-
resents a major contribution of this work.

Furthermore, the role of Young's modulus is discussed. It is found
that despite the exaggerated discrepancy of peak kinetic energies,
flow-depth profiles (including the final deposit morphology) are insen-
sitive to the choice of Young's modulus. Therefore, it is proper to use a
relatively low Young's modulus to improve computational efficiency,
such that simulations of larger samples and finer particles are affordable
in coupled discrete-continuum simulations.

The understanding of the flow regimes and scaling rules is crucial in
industrial and geological applications involving immersed granular
flows. In particular, we derived the following scaling rules for fluid vis-
cosity and particle properties (for the specific contact model we use):
μf1/μf2 = (dp1/dp2)3/2, E1/E2 = dp1/dp2, and e1/e2 = 1, with other proper-
ties (e.g., fluid density, particle density, and the coefficient of friction)
remaining constant. The scaling rules are useful for down-scaled exper-
iments, for instance, where large particles may be combined with a
more viscous fluid such that a certain industry-scale situation can be
reproduced. Furthermore, the numerical method used in this study per-
mits access to internal flow properties, which are of potential interest to
future work regarding dry and wet granular rheology and thus large-
scale continuum modeling of granular flows.
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Appendix A. Solution of the equation of motion in viscous regime

The equation of motion for a sphere sedimenting in the viscous re-
gime is given by

π
6
d3pρp

dv
dt

¼ π
6
d3pΔρg−3πdpμ f v ðA:1Þ
which can be rewritten into a first-order linear differential equation

dv
dt

þ 18μ f

ρpd
2
p

v ¼ Δρ
ρp

g ðA:2Þ

Applying the integrating factor method, we have the following gen-
eral solution,

v ¼ Δρgd2p
18μ f

þ C � e
−

18μ f

ρpd
2
p
t

ðA:3Þ

where C is an arbitrary constant. Since the sedimentation starts from
rest, i.e., v = 0 if t = 0, we have C = − Δρgdp2/18μf.

Defining the viscous characteristic time and viscous terminal velocity
as

τV ¼ ρpd
2
p

18μ f
and vtV ¼ Δρgd2p

18μ f
; ðA:4Þ

respectively, we can write

v ¼ vtV 1−e−t=τV
� �

ðA:5Þ

indicating that as t→∞, v→ vtV.When t= τV, we have v=(1− e−1)vtV
≈ 0.63vtV, which indicates that τV is the characteristic time for the
sphere to obtain 63% of the viscous terminal velocity.

Appendix B. Solution of the equation of motion in fluid-inertial
regime

The equation of motion for a sphere sedimenting in the inertial re-
gime is

π
6
d3pρp

dv
dt

¼ π
6
d3pΔρg−

π
8
d2pCdρ f v

2 ðB:1Þ

which is rewritten as

dv
dt

þ 3
4
Cdρ f

dpρp
v2 ¼ Δρ

ρp
g ðB:2Þ

Using the separation of variable method, we obtain

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3
gdp
Cd

Δρ
ρ f

s
� tanh

t

ρp

Δρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3
gdp
Cd

Δρ
ρ f

s
0
BBBB@

1
CCCCA ðB:3Þ

which satisfies the condition that v = 0 if t = 0.
Let τI and vtI be the inertial characteristic time and inertial terminal ve-

locity, respectively, as

τI ¼
ρp

Δρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gdp
3Cd

Δρ
ρ f

s
and vtI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gdp
3Cd

Δρ
ρ f

s
; ðB:4Þ

we simplify the solution to

v ¼ vtI � tanh t=τIð Þ ðB:5Þ

indicating thatwhen t→∞, v→ vtI.When t= τI, we have v= tanh (1)vtI
≈ 0.76vtI, which indicates that τI is the characteristic time for the sphere
to obtain 76% of the inertial terminal velocity.
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Appendix C. Details of CFD-DEM

Appendix C.1. Governing equations

The CFD-DEM coupling is implemented with a combination of open
source C++ libraries, namely, OpenFOAM and CFDEMproject. The for-
mer is a CFD toolbox [41], while the latter includes LIGGGHTS for DEM
simulations and CFDEMcoupling for the data exchange between CFD
and DEM [34].

In CFD, we solve the local-averaged Navier-Stokes equations
[34,42,43],

∂
∂t

α fρ fu f

� �
þ ∇ � α fρ fu fu f

� �
¼ −α f∇pþ α f∇ � T f

þ α fρ f g−fpf ðC:1aÞ

∂α f

∂t
þ ∇ � α fu f

� � ¼ 0 ðC:1bÞ

where αf is the volume fraction of fluid in each computational cell
(i.e., porosity), uf = (uf,vf,wf) is the velocity vector of fluid, ρf is fluid
density, p is pressure, Tf = μf(∇uf + ∇ uf

T) is the extra-stress tensor of
a fluid with viscosity μf, fpf is the interaction force acting from the fluid
phase to the particulate phase (see Appendix C.3), and g is the gravita-
tional acceleration vector.

In DEM, the motion of particles is governed by the Newton's second
law [34],

mi
dui

dt
¼
Xnci
j¼1

Fcij þ F f
i þmig ðC:2aÞ

Ii
dωi

dt
¼
Xnci
j¼1

Mc
ij ðC:2bÞ

where ui=(ui,vi,wi) denotes the translational velocity of particle i, Fijc is
the contact force on particle i by particle j or boundaries, Fif is the
particle–fluid interaction force acting on particle i, ωi is the particle an-
gular velocity, Ii is the moment of inertia, andMij

c is the moment acting
on particle i by particle j or boundaries. The contact force Fijc is calculated
using a Hertz-typemodel (see Appendix C.2). The fluid force Fif includes
buoyancy force Fib = Vi(− ∇ p + ∇ ⋅ Tf), where Vi is the volume of
particle i, and drag force Fid (see Appendix C.3).

Appendix C.2. Contact model

The key ingredients of the Hertz contact model are presented to
aid the understanding of the scaling of particle dynamics. The current
Hertz model is detailed in [30]; different Hertz-type models exist
in the literature [26,28,29], which mainly differ in the damping
part. The current model has the advantage of using measurable ma-
terial properties (i.e., Young's modulus E, Poisson's ratio ν, the coef-
ficient of friction μp, and the coefficient of restitution e) as input
parameters.

The contact force between particles i and j has the normal and tan-
gential components, i.e.,

Fcij ¼ Fnij þ Ftij ðC:3Þ

which can be evaluated by summing the elastic and damping parts,

Fnij ¼ knδn þ γnv
n
ij ðC:4aÞ

Ftij ¼ ktδt þ γtv
t
ij ðC:4bÞ
j Ftij j ⩽μp j Fnij j ðC:4cÞ

where subscripts (or superscripts) n and t denote normal and tangential
components, respectively, k and γ are elastic and damping parameters,δ is overlap vector (with δn being overlap distance), and vij is the relative
velocity at contact. The elastic and damping parameters are given as fol-
lows.

kn ¼ 4
3
Eeff

ffiffiffiffiffiffiffiffiffiffiffiffi
Reffδn

p
ðC:5aÞ

γn ¼ 2

ffiffiffi
5
6

r
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Snmeff

p
ðC:5bÞ

kt ¼ 8Geff

ffiffiffiffiffiffiffiffiffiffiffiffi
Reffδn

p
ðC:5cÞ

γt ¼ 2

ffiffiffi
5
6

r
β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Stmeff

p
ðC:5dÞ

where Sn, St and β are parameters,

Sn ¼ 2Eeff
ffiffiffiffiffiffiffiffiffiffiffiffi
Reffδn

p
ðC:6aÞ

St ¼ 8Geff

ffiffiffiffiffiffiffiffiffiffiffiffi
Reffδn

p
ðC:6bÞ

β ¼ lneffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2eþ π2

p ðC:6cÞ

with Eeff, Geff, Reff, andmeff being effective Young's modulus, shear mod-
ulus, radius, and mass, respectively, given by

1
Eeff

¼ 1−ν2
i

Ei
þ 1−ν2

j

E j
ðC:7aÞ

1
Geff

¼ 2 2−νið Þ 1þ νið Þ
Ei

þ 2 2−ν j
� �

1þ ν j
� �

E j
ðC:7bÞ

Reff ¼
RiRj

Ri þ Rj
ðC:7cÞ

meff ¼
mimj

mi þmj
ðC:7dÞ

where subscripts i and j indicate particles i and j respectively.

Appendix C.3. Fluid-particle interaction

The fluid-particle interaction is considered as a momentum ex-
change term in CFD,

fpf ¼ Kpf u f− up
	 
� � ðC:8Þ

where 〈up〉 is the cell-based average particle velocity and Kpf is given by

Kpf ¼

X
i

Fdi

Vfc j u f− up
	 
 j ðC:9Þ

where Vfc is the volumeof computational cell, and Fi
d is themagnitude of

drag force acting on individual particles in DEM, such that Fid= Fi
d(uf−

〈up〉)/ ∣ uf − 〈up〉∣.
We calculate the drag force using the Di Felice model [25],

Fdi ¼ 1
8
Cdρ fπd

2
i j u f−ui j α1−χ

f ðC:10Þ
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where di is the diameter of particle i, Cd is drag coefficient, andχ is a cor-
rective coefficient. Both Cd and χ are a function of the particulate Reyn-
olds number Rep,

Cd ¼ 0:63þ 4:8ffiffiffiffiffiffiffiffiffiffi
Rep

p
 !2

ðC:11aÞ

χ ¼ 3:7−0:65 exp −
1:5− log10 Rep
� �2

2

" #
ðC:11bÞ

with

Rep ¼ α fρ f di j u f−ui j
μ f

ðC:12Þ

which considers the local porosity, αf, of a particulate system. Note that
a different drag law [23,34]may be adopted in the CFD-DEM simulation,
which may slightly affect fluid-particle interactions when Rep is in a
moderate range. The choice of the drag law is expected to not affect
the conclusions drawn in this paper.

Appendix D. Effect of Young's modulus

As presented in Section 3.1 and Table 1, we adopt relatively low
values of Young's modulus in order to accelerate our simulations, espe-
cially when fine particles (dp = 0.2 mm) are used. To demonstrate that
the reduction of Young's modulus only has a negligible impact on the
runout and deposition of column collapses, we perform a sensitivity
analysis on the values of Young's modulus by varying E from 2.5 × 108

Pa to 5 × 1010 Pa for the three medium-sized cases (dp = 1 mm),
i.e., FM, IM, and VM. The final deposits in the three regimes are
Fig. 9. Effect of Young's modulus in free-fall (upper row), inertial (middle row), and viscous (l
reader is referred to the web version of this article.)
compared in Figs. 9(a–c), respectively, while the normalized energy
evolutions are presented in Figs. 9(d–f).

One important conclusion made from Figs. 9(a–c) is that the varia-
tion of E over two orders of magnitude produces nearly identical final
deposit morphologies, respectively, in the three flow regimes. In addi-
tion, similar to the comparison in Fig. 6, we have verified that the
flow-depth profiles match well at a series of time instances (plots not
shown for brevity). The convergence of flow-depth profiles (including
front position) and final deposit shapes (including runout distance)
demonstrates that the effect of particle stiffness is rather negligible in
the current dynamic configurations. It is therefore reasonable to adopt
a small value of E to improve the computational efficiency, which is po-
tentially important for future studies involving larger columns and finer
particles.

On the other hand, from the energy plots in Figs. 9(d–f) we observe
discrepancies of normalized peak energies. For instance, the peak of Ekxp

tends to decrease as E increases. In other words, energy dissipation
seems to be imperfectly scaled when particle stiffness varies. Consider-
ing the dimensionless stiffness and damping parameter established in
Section 2.3, the dimensionless stiffness and damping parameter tend
to increase when E increases or dp decreases, which explains the ten-
dency observed in Fig. 9(d–f) that the flow tends to gain a lower kinetic
energy when Young's modulus increases. Note that total energy exag-
gerates the actual difference in local velocities, which is so small that
the final deposit is not affected. The tendency that a higher stiffness
leads to a lower kinetic energy has been reported previously in steady
dense granular flows in both dynamic [29,44] and quasi-static [45] re-
gimes. Nevertheless, the influence of dimensionless particle properties
is considered to be negligible, since we identify the Stokes number
and density ratio as the major dimensionless numbers that determine
flow regimes and dynamics similarity combined with the major results
in Fig. 3–Fig. 7.
ower row) regimes. (For interpretation of the references to color in this figure legend, the
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