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A B S T R A C T

This paper presents a parametric study of a fluid-particle model which couples Lattice Boltzmann Method (LBM)
and Discrete Element Method (DEM) using an immersed moving boundary technique. Benchmark cases with
increasing complexity are simulated to understand the numerical accuracy, stability and efficiency of the al-
gorithm. A guideline for a high-quality LBM-DEM model is proposed and applied to a test case of granular
collapse in water. The simulation result shows excellent agreement with a companion experiment, which de-
monstrates the capability of LBM-DEM to describe the dynamics of densely packed and friction dominant im-
mersed granular flows, highlighting its potential to study geophysical mass movements.

1. Introduction

For large-scale geophysical flows, such as debris flows and sub-
marine landslides, runout distance is one of the key parameters for risk
assessment and design of hazard mitigation works. Such catastrophic
events usually involve fast transport of densely packed granular mate-
rials in a viscous fluid. However, there is still a concern about the ac-
curacy of predictive models for immersed granular flows, especially
when complex fluid-particle interactions play a non-negligible role in
the dynamics of the flow. For example, the generation of excess pore
fluid pressure may lead to fast or slow dynamics of saturated soils
sliding down a slope [1]. The strong coupling effect between fluids and
particles has a vital role underlying these micro-behaviors. Benefiting
from highly advanced computer technology, numerical simulations
have become appealing tools to study fluid-particle interaction pro-
blems, which require an accurate description of momentum exchange
at the fluid-particle interface, together with an adequate resolution to
account for the fully resolved pore-scale fluid flows.

Classic laws governing fluid-particle interactions have been devel-
oped and verified a long time ago based on massive physical experi-
ments and rigorous theoretical analysis, such as the well-known Darcy’s
law [2] and the Ergun equation [3,4]. These semi-empirical relations
usually serve as the underlying assumptions for successful multiphase
numerical simulations, such as the coupling between Computational
Fluid Dynamics (CFD) and Discrete Element Method (DEM) [5]. In this

kind of CFD-DEM technique, a fluid cell always has a size larger than
the particles, resulting in an averaged porosity that is coupled to the
fluid dynamics and to the resultant hydrodynamic forces. The coupling
method with fluid cells larger than particles is denoted as the coarse-
grid method in this work. Although the coarse-grid method has been
successfully applied for a variety of problems [5–8], it can only provide
limited pore-scale information. Therefore, fine-grid CFD-DEM method,
in which one particle covers multiple fluid cells, has also been devel-
oped via the Immersed Boundary Method [9–11] to achieve a more
general and accurate description of fluid-particle interaction, instead of
heavily relying on the semi-empirical drag models. However, the fine-
grid CFD-DEM method is sometimes numerically prohibitive due to its
high computational cost to handle mesh generation (particularly, if
dynamic local mesh refinement is used) together with the solution to
the nonlinear Navier-Stokes equations, even for a small system invol-
ving several hundreds of particles [11].

Alternatively, the Lattice Boltzmann Method (LBM) can be coupled
with DEM, in place of the conventional CFD, for the simulation of fluid-
particle interaction problems. LBM solves the Boltzmann equation,
which can be seen as an approximation of the incompressible Navier-
Stokes equations, on a lattice at the mesoscopic scale based on kinetic
theory [12–14]. When LBM is coupled with DEM, it shares the ad-
vantages of the fine-grid CFD-DEM method, such as the fully resolved
pore-scale fluid flows and explicit calculation of hydrodynamic forces,
and it is more efficient than CFD-DEM, benefiting from the much
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simplified governing equations with an excellent parallel computing
performance [13]. Since LBM uses an explicit algorithm to stream fluid
particles, it is also easier to couple the fluid flow with solid particles. As
a result, reasonably large-scale problems can be simulated accurately
and efficiently using the LBM-DEM technique.

For the coupling between LBM and DEM, there are two commonly
used approaches, namely, the Momentum Exchange (ME) method
[15,16] and the Immersed Moving Boundary (IMB) method [17,18].
Conceptually, the ME and IMB methods share the same basic idea of
enforcing a no-slip boundary condition between fluids and solids with a
hydrodynamic interaction according to the conservation law of mo-
mentum. In the ME method, the no-slip boundary condition is achieved
via a bounce-back scheme at the fluid-particle interface [15], whereas,
in the IMB method, the LBM collision operator is modified by following
the non-equilibrium bounce-back principle if a fluid cell is covered by
solids [17]. Several studies in the literature aimed at directly comparing
the ME and IMB methods [19,20]. In our work, the IMB method is
chosen to couple LBM with DEM, because it has a better sub-grid scale
(SGS) resolution, and therefore, fewer distortions on the geometrical
representation of the moving particles and on the hydrodynamic forces
acting on them as particles move across fluid cells. It is also worth
mentioning that we are aware that improvements of the ME method
have been developed by introducing a more sophisticated interpolated
bounce-back scheme [20] to improve its overall accuracy. However, the
interpolation requires access to additional information at the neigh-
boring fluid cells. As a result, the locality of the LBM calculation is lost
and numerical issues may occur when particles are in close vicinity
[20].

Successful two-dimensional (2D) and three-dimensional (3D) ap-
plications of the coupled LBM-DEM model via an IMB technique have
been reported across multiple disciplines [19–30]. Han and Cundall
[19] carried out a 2D investigation on the accuracy and efficiency of the
IMB coupling method and concluded that a spatial resolution of 10 fluid
cells per particle diameter provided an accurate description of fluid-
particle interactions. Later, Rettinger and Rüde [20] simulated a single
particle settling in an ambient fluid in a 3D configuration and reported
that a higher spatial resolution was required so that the particle velocity
error was below 5%. The 3D scheme was also validated by Strack and
Cook [24], in particular the phenomenon of two particles drafting,
kissing, and tumbling in a fluid column was well captured. Then, the
LBM-DEM model was further extended for particle transport in turbu-
lent flows [22,23,25]. To improve the computational efficiency for 3D
problems involving multiple particles, a relatively inexpensive lattice
structure and a dynamic sub-cycling scheme were proposed by Owen
et al. [26] and settling of a granular assembly in a viscous fluid field
was successfully simulated. Recently, Wang et al. [29,30] implemented
the bonded particle model into the contact law of DEM to study soil
erosion in granular filters.

Unlike the abovementioned particle suspensions and bonded par-
ticle problems, this work is dedicated to the validation and application
of the LBM-IMB-DEM approach in problems involving densely packed
particles, whose motion is governed by both fluid-particle (viscous drag
and lubrication) and particle-particle (collision and friction) interac-
tions. These problems are quite common in nature and in geotechnical
engineering and two unique features can be identified. First, the pore
fluid flows must be resolved as accurately as possible due to the sig-
nificant influence of excess pore fluid pressure on the flow dynamics
[1,31]. In this regard, the LBM-DEM model must be formulated in 3D
and a coarse-grid discrete particle simulation model may not be ap-
plicable [32]. Second, the shear between closely packed particles im-
plies that the lubrication effects must be resolved with adequate accu-
racy [33]. An artificial lubrication model must be incorporated into the
ME method due to the sudden loss of fluid when the gap between
particles is less than one fluid cell [15,34]. The question whether the
SGS resolution of the IMB method is sufficient to resolve the lubrication
force remains to be answered.

The goal of this study is to apply the LBM-DEM method to simulate
immersed granular flows in which solid particles are densely packed
and the inter-particle friction plays a significant role. In order to ex-
amine various sources of errors, a series of benchmark cases following
the strategy of increasing complexity are simulated, starting from a
single stationary particle to multiple moving particles. After addressing
the numerical issues, an application to the slumping of an immersed
granular column initially at rest onto a horizontal plane is presented.
The immersed granular collapse case has been widely applied in the
literature to study the transient dynamics of large-scale geophysical
mass movements due to its simple configuration but rich dynamics
[8,31,33,35,36].

The rest of this paper is organized as follows. Section 2 introduces
the numerical method, followed by the coupling scheme. Four bench-
mark cases are studied in Section 3 to test the performance of the LBM-
DEM model in terms of accuracy, stability and efficiency. Section 4
presents numerical results of the immersed granular collapse simula-
tion, together with the comparison to our experimental data. Section 5
summarizes the contributions of this work.

2. LBM-DEM formulation

2.1. Lattice Boltzmann method

LBM solves the hydrodynamics based on the kinetic theory at a
mesoscopic scale [13]. The whole fluid system is described by a col-
lection of fluid particles residing on a regular Cartesian mesh (lattice)
with cubic cells. The number of fluid particles at each lattice node is
quantified by a set of particle distribution functions (PDFs) with pre-
defined discrete directions pointing to the neighboring lattice nodes.
The PDF at time t positioned at x pointing to the i-th direction is de-
noted as f tx( , )i . In this study, a D3Q19 lattice structure [12], as shown
in Fig. 1(a), is used for 3D LBM simulations. The lattice uses 19 discrete
velocities, instead of 15 or 27, to achieve a good balance between ac-
curacy and efficiency [37]. The definitions of lattice direction, lattice
node, lattice cell and lattice spacing ( x) are illustrated in Fig. 1(b).

In contrast to the conventional CFD that solves the nonlinear partial
differential equations in terms of macroscopic variables, such as the
fluid density f and the fluid velocity uf , the governing equation in LBM
describes the evolution of PDFs. With a BGK approximation (named
after Bhatnagar, Gross, and Krook [38]), the governing equation is
written as:

+ + =f t f t f t f tx c x x x( , ) ( , ) 1 [ ( , ) ( , )].i i t t i i i
eq

(1)

The left-hand side (LHS) of Eq. (1) is the streaming process, during
which the PDFs are passed to the neighboring lattice nodes (from x to

+x ci t) with a lattice velocity ci along the i-th direction over a LBM
time step t. The right-hand side (RHS) of Eq. (1) is the collision process,
during which the PDFs are linearly relaxed towards the equilibrium
distribution functions (EDFs), f tx( ,i

eq ), with a single dimensionless
relaxation time . The EDF adopted here is the Maxwellian one, which
can be expanded into a Taylor series with respect to the macroscopic
fluid velocity uf , as [39]:
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where wi is the weight associated with the lattice velocity ci, whose
values are summarized in Table 1 and =u u| |f f . The speed of sound cs
for D3Q19 is 1/ 3 in lattice units [39]. The ratio between the magni-
tude of fluid velocity and the speed of sound is defined as the Mach
number, i.e., =M u c/f s.

Based on the fundamental laws of mass and momentum conserva-
tions, the macroscopic fluid density f and velocity uf can be re-
constructed from the zeroth-order and first-order velocity moments of
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the PDFs, as:

=
=

f ,f
i

i
0

18

(3)

=
=

fu c .f f
i

i i
0

18

(4)

The Navier-Stokes equations can be recovered from Eq. (1) via a
multi-scale (Chapman-Enskog) expansion [40], and a relationship be-
tween the relaxation time , the LBM time step t, the lattice spacing x
and the kinematic fluid viscosity f is obtained as:

= c 1
2

.f s
x

t

2
2

(5)

In Eq. (5), cs and are model constants and f is a material property.
The LBM time step t is dependent on the used discretization of the
lattice grid with spacing x. The other macroscopic variable, pressure p,
can be calculated from the fluid density by the equation of state [40]:

=p c .s f
2

(6)

The major source of compressibility error in LBM is the truncated
Taylor expansion of the EDFs when the higher order terms of the Mach
number are dropped off. To approximate an incompressible flow, it
must fulfill M 1. The incompressible requirement in LBM simulations
poses a constraint on the LBM time step and thereby affecting the time
step for the particle simulations. The synchronization between LBM and
DEM will be addressed in Section 2.4.

2.2. Discrete element method

In many two-phase continuum simulations, such as fluidized beds,
the interactions among solid particles is often approximately treated as
an averaged lubrication force, and the motion of the solid particles are
also averaged [41]. However, for the cases where the particles are
densely packed and subjected to large displacements, such as the

immersed granular column collapse [8,33,36], the interaction between
contacting particles has to be accurately calculated. A thoughtful choice
is to adopt DEM [42] in order to better resolve the inter-particle in-
teractions.

For the classic formulation of DEM, individual solid particles are
taken as “rigid” bodies with “soft” contacts, allowing small overlaps
between contacting objects. Fig. 2(a) shows a contact pair between
particle a (in red) and particle b (in blue) with a overlap equal to n,
which can be calculated by:

= +r r r n( ) ,n a b ab (7)

where ra and rb are the radii of particle a and b, respectively. The spa-
cing between the particle centers is denoted as rab and n is the unit
normal pointing to the particle center. For simplicity, all the particles in
this study are spherical.

The contact forces can be calculated based on a simple spring-
dashpot model [42], as shown in Fig. 2(b). The normal contact force Fn
is given by [42]:

Fig. 1. (a) A D3Q19 lattice structure for 3D LBM simulations with 19 lattice velocities. Each lattice velocity is associated with a PDF from f0 to f18; the shaded plane is
redrawn in (b) showing the lattice direction, lattice node, lattice spacing and a two-dimensional projection of a cubic lattice cell.

Table 1
Summary of the weight wi for PDF fi with lattice velocity ci. Note that the
summation of all the weights shall be equal to the unity.

PDFs, fi Lattice velocity, ci Weights, wi

f0 (0, 0, 0) 1/3
f1 - f6 (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 1/18
f7 - f18 (±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) 1/36

Fig. 2. (a) Sketch of two particles in contact: particle a in red and particle b in
blue; (b) schematic sketches of the spring-dashpot model for the calculation of
normal force Fn and tangential force Ft . (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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= +k cF u ,n n n n n (8)

where kn and cn are the stiffness and damping coefficient in the normal
direction. The relative normal velocity is denoted as un. The tangen-
tial contact force Ft is written as [42]:

= k t cF u ud ,t t
t

t

t t t
c

c

,0 (9)

where kt and ct are the stiffness and damping coefficient in the tan-
gential direction and the relative tangential velocity is denoted as ut .
The integral corresponds to an incremental spring that stores energy
from the relative tangential motion, representing the elastic deforma-
tion of the particle surface over the contact duration from tc,0 to tc. The
tangential force points to a direction opposite to the tangential dis-
placement. Besides, the magnitude of the tangential force is limited by
the Coulomb friction µFn, at which the two contacting particles start to
slide against each other, where µ is the smallest of the friction coeffi-
cients of the two particles in contact.

By changing k k c, ,n t n and ct as a function of overlap and relative
velocities, different contact models (or force-displacement laws) can be
proposed for the calculation of contact force ( = +F F Fc n t). In this
study, the Hertz contact model is adopted [36,43]. Considering the
forces (contact Fc, gravity G, fluid drag Ff ) and torques (contact Tc, fluid
drag Tf ) acting on a particle, its linear and angular velocities can be
updated according to Newton’s second law of motion:

= + +ma F G F ,c f (10)

= +I T T ,c f (11)

where m and I are the mass and moment of inertia of the particle. The
translational acceleration and angular velocity are denoted as a and ,
respectively. The updated particle position and orientation can be cal-
culated by taking the time integral of Eq. (10) and Eq. (11) via the
Verlet method [44].

2.3. Immersed moving boundary method

In this study, the use of LBM and DEM for simulating the fluid and
solid particle phases separately, necessitates an efficient and accurate
coupling framework. Fig. 3(a) shows a two-dimensional sketch of two
DEM spheres mapping on the LBM lattice grid. In this sketch, the lattice
resolution, N, defined as the number of lattice cells per particle dia-
meter, is equal to 5. The darkness of the lattice cell corresponds to its
value of solid ratio ( ), which is calculated as the volume of sub-cells
fully covered by the solid particle divided by the total volume of a
lattice cell; the colors white ( = 0), grey (0< < 1) and black ( = 1)
refer to fluid, partially saturated and solid cells, respectively.

The basic principle of the IMB method is to introduce a new colli-
sion operator, , depending on the solid ratio, . Ideally, the exact value
of can be found from a geometrical analysis, but it often requires high
computational power. Therefore, a cell decomposition method is
adopted [26], as illustrated in Fig. 3(b). In this method, the partially
saturated cells are sub-divided into nsub

3 equal-sized sub-cells. An inside-
outside algorithm is performed on the sub-cell centers and is esti-
mated as the number of sub-cells inside the solid boundary (in black)
divided by nsub

3 . Note that although the cell decomposition method is
relatively easy for implementation, there are more efficient algorithms
available by using polyhedral approximation [26] or Gaussian Quad-
rature [45].

For fluid cells with equal to 0, the normal hydrodynamic collision
takes place, and is taken as the BGK collision operator, f , as shown
on the RHS of Eq. (1). For solid cells with equal to 1, a collision
operator proposed by Noble and Torczynski [17] and based on the
concept of non-equilibrium bounce-back [46] is applied and denoted as

s, which is given by:

= +f t f f f tx u u x( , ) ( , ) ( , ) ( , ),i
s

i i
eq

f f i
eq

f s i (12)

where us is the macroscopic velocity of solid at the position of the
lattice node x . The subscript i denotes the opposite direction of i. The
role of the solid collision operator s is to ensure a no-slip boundary
condition between the fluid phase and the solid phase by setting the
PDF, + +f tx c( , )i i t t , equal to the EDF, f u( , )i

eq
f s , plus the bounce-

back of the non-equilibrium part in the opposite direction,
f t fx u( , ) ( , )i i

eq
f f .

For partially saturated cells with between 0 and 1, a weighting
function, B, is used so that it gives:

= +B B(1 ) .s f (13)

Following Noble and Torczynski [17], the weighting function can be
calculated as a function of the relaxation time and the solid ratio :

=
+

B ( , ) ( 1/2)
(1 ) ( 1/2)

.
(14)

Fig. 3(c) shows the value of the weighting function B against the
solid ratio at four different values of relaxation time: = 0.53, 0.62,
0.8 and 1.0. It can be seen that B varies from 0.0 to 1.0 as varies from
0.0 to 1.0. The first term in Eq. (13), B s, represents the amount of
disturbance to the fluid field due to the presence of solid particles.

Therefore, the hydrodynamic force Ff is the sum of the momentum
transfer along all lattice directions at n lattice cells covered by the solid
particle (solid and partially saturated lattice cells), which gives:

=
= =

BF c .f
j

n

j
i

i
s

i
1 0

18

(15)

The hydrodynamic torque Tf is the cross product of the force and
the corresponding lever arm, which can be written as:

= ×
= =

BT x x c( ) ,f
j

n

j j s
i

i
s

i
1 0

18

(16)

where xs is the center of mass of the solid particle, and xj is the co-
ordinates of the j-th lattice cell. The hydrodynamic force and torque

Fig. 3. (a) Two-dimensional sketch of two DEM spheres mapping on the LBM
lattice grid with the lattice resolution N =5. The darkness of a lattice cell
corresponds to its solid ratio : white ( = 0), grey (0< < 1) and black ( = 1)
refer to fluid, partially saturated and solid cells, respectively; (b) one of the
partially saturated cells is zoomed in and its solid ratio is calculated via a cell
decomposition method with 5 sub-slices; (c) plot of the weighting function B
against the solid ratio at various relaxation times .
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calculated from Eq. (15) and Eq. (16) are back-substituted into Eq. (10)
and Eq. (11) to update the kinematics and position of each individual
solid particle.

2.4. Coupling scheme

The LBM-DEM model is implemented by compiling an open source
LBM C++ library (Palabos) as a master program, which calls a DEM
code LIGGGHTS as an external library [47]. Fig. 4 shows the flowchart
of the coupling scheme. The computing cycle starts with the generation
of DEM particles and the initialization of the fluid field, followed by the
particle-particle interactions via Eq. (8) and Eq. (9). To achieve a stable
DEM simulation, the DEM time step, t , needs to be smaller than a
critical value tcr set by the stiffness and mass of the particles [48]. It is
worth noting that the presence of fluid helps to damp the low-frequency
elastic waves which can increase the stability of particle simulations,
such that a t value greater than tcr could be permissible. However, it
is rather difficult to quantify this stabilization effect. Apart from this,
the calculated critical DEM time step tcr is in general smaller than the
time step t in LBM simulations, especially for problems in geotechnical
engineering due to the large stiffness of soils and rocks. To synchronize
DEM with LBM, Nsub DEM sub-cycles are conducted for each step of
LBM evolution, so it gives:

=t
N

.t

sub (17)

As a result, during the DEM sub-cycles, the hydrodynamic force Ff
and torque Tf remain unchanged. It is not an easy task to pre-determine
a proper value for Nsub, which itself is problem dependent. A Nsub value
smaller than 10 is chosen in [27] for the pipe erosion problem. The
influence of Nsub on the LBM-DEM results will be discussed in Section
3.2.

After Nsub of DEM sub-cycles, the updated particle positions are
mapped on the lattice grid. Then, the lattice cells covered by the solid
particles are identified. For partially saturated cells, the solid ratio is
calculated via the cell decomposition method as shown in Fig. 3(b).
According to the cell type (fluid, partially saturated or solid), the cor-
responding collision takes place. Note that the modified collision op-
erator also appears in Eq. (15) and Eq. (16), therefore, the hydro-
dynamic force and torque are calculated right after the collision process
(before streaming) for a high efficiency. Later, the hydrodynamic forces
are passed back to the DEM module to resolve the particle motions.
Then, the resulting PDFs stream to the neighboring lattice nodes. Based
on the redistributed PDFs, the fluid density f and velocity uf can be

updated from Eq. (3) and Eq. (4). According to Eq. (6), the fluid pres-
sure field can be calculated if required. Once these steps are completed,
one cycle of LBM-DEM simulation is finished and the simulation carries
on until the specified number of cycles is reached.

3. Model validation and parametric study

It is well recognized that an immersed granular collapse is a tran-
sient problem, involving isolated particles flowing in a fluid (front and
granular free surface), fluid flowing through a static granular skeleton
and particles shearing against each other. To examine various sources
of numerical errors, the LBM-DEM model is first benchmarked against
four cases in this section. The roles of the lattice resolution and the
relaxation time are first investigated via a simple problem of Poiseuille
flow past a fixed sphere in Section 3.1. Section 3.2 presents the simu-
lation of a heavy particle settling in an ambient fluid to test the sub-
cycling scheme and to examine the numerical error caused by particle
moving across multiple fluid cells. The influences of lattice resolution
and relaxation time on the numerical results are discussed again in this
transient scenario regarding the particle settling velocity. Then, the
LBM-DEM model for densely packed granular systems is validated by
simulating a flow through a porous medium in Section 3.3. After that,
the capability of describing the rheology of fluid-particle mixtures is
highlighted in Section 3.4, in which a concentrated suspension in a
planar Couette flow is simulated. The major objective of this section is
to propose a guideline for a successful immersed granular collapse si-
mulation in Section 4.

3.1. Poiseuille flow past a fixed particle

3.1.1. Problem description
The successful coupling between LBM and DEM is first tested

against a simple benchmark case: a Poiseuille flow past a fixed solid
particle, as shown in Fig. 5. The hydrodynamic force and torque acting
on the particle at steady-state are measured and compared to the
available analytical solutions [49]. From this simple benchmark case,
the influences of two model parameters, i.e., the lattice resolution N
and the relaxation time , which play significant roles in LBM-DEM
simulations, are discussed in detail. In addition, the least required lat-
tice resolution and the recommendation for the relaxation time are
provided.

As shown in Fig. 5, the fixed particle is positioned between two
parallel solid walls with separation of ly =10mm. The radius of the
particle is R =1mm, which is positioned at half-way in x and z

Fig. 4. Flowchart of the LBM-DEM coupling scheme.
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directions and 2.5 mm away from the lower wall measured from the
particle center. The upper and lower solid walls in y-direction are set to
be no-slip boundary conditions, while periodic boundaries are applied
in the other two directions. The lengths in x and z directions are large
enough with = =l l l4x z y =40mm to make sure that the reflected
images of the particle are hydrodynamically decoupled [50]. The flow
is driven from left to right by a body force with an equivalent pressure
gradient equal to 2.5E-5 Pa/m. The fluid density ( f ) and dynamic
viscosity (µf ) are set to be 1000 kg/m3 and 0.001 Pa·s. The Reynolds
number calculated from the mean flow velocity and the particle dia-
meter is about 4.2E-7, which is small enough to achieve Stokes flow.

Approximate analytical solutions for the magnitudes of hydro-
dynamic force Fx and torque Tz acting on the particle caused by the drag
from the fluid flow are available from Happel and Brenner [49], which
are given by:

=
+

F RU
R l

R l R l R l
6

1 1/9( / )
1 0.6526( / ) 0.316( / ) 0.242( / )

,x f f
y

y y y

2

3 4 (18)

= + +T R U R
l

R
l

R
l

8
3

1 0.0758 0.049 ,z f f
y y y

2
2

(19)

where U is the upstream mean flow velocity.
To compare with Happel and Brenner’s estimation as shown in Eqs.

(18) and (19), the relative error in percentage is defined as:

= ×% error Analytical solution Numerical result
Analytical solution

100.
(20)

3.1.2. Effects of the lattice resolution
Similar to many other numerical methods, the accuracy of LBM-

DEM simulations highly depends on the spatial (lattice) resolution. In
this study, numerical simulations with the lattice resolution, N, defined
as 5, 10, 20 and 25 are carried out. For each lattice resolution, the
number of sub-slice nsub varies between 2, 5 and 10 for the calculation
of the solid ratio . The relative force and torque errors for different nsub
values are plotted against the lattice resolution in Fig. 6. For these si-
mulations, the relaxation time is fixed at = 1.0.

When the lattice resolution is low, with N =5, the force and torque
errors can be as high as 17.8% and 31.4%, when nsub =5. As N in-
creases from 5 to 20, both the calculated hydrodynamic force and
torque errors decrease rapidly. At N =20, the LBM-DEM model is able
to produce results within 4.5% of errors compared to Happel and
Brenner’s estimation. Further increase of lattice resolution from N =20
to N =25 only yields a minimal improvement in accuracy. Hence, a
spatial resolution of at least 20 lattice cells across one particle diameter
is recommended to achieve reasonably accurate coupled LBM-DEM si-
mulations using the IMB method.

The fluid-like behavior of the partially saturated cells in the LBM-
DEM model is determined by their solid ratios. And indeed, the accu-
racy of solid ratio calculation does affect the LBM-DEM results

significantly when the lattice resolution is low. However, if the lattice
resolution is sufficiently high, for example N =20, the influence from
nsub is negligible. And it will also be shown in Section 3.1.4 that nsub,
within the range of consideration, is not the major factor affecting the
computational time in this particular case.

3.1.3. Effects of the relaxation time
The relaxation time physically determines how fast the PDFs re-

cover the current EDFs, as shown in Eq. (1). Previous study has already
revealed that the BGK (or single-relaxation-time) model adopted in our
work may lead to inaccurate no-slip boundary locations [26,51–53]. To
investigate the influence of the relaxation time on the coupling be-
tween LBM and DEM quantitatively, numerical simulations with equal
to 0.53, 0.62, 0.8 and 1.0 are carried out with the fluid viscosity being
unchanged. The relative force and torque errors are plotted against the
relaxation time in Fig. 7 at a low (N =5) and a high (N =20) lattice
resolution.

Interestingly, it can be seen that as increases, both the relative
force and torque errors increase roughly in a linear way. The depen-
dence of the LBM-DEM results on the relaxation time is much more
significant when the lattice resolution is low at N =5. The relaxation
time is able to affect the accuracy of the LBM-DEM model in several
different ways.

First, for a constant fluid viscosity f and a fixed lattice spacing x,
the LBM time step t decreases as the relaxation time decreases ac-
cording to Eq. (5). As a result, the hydrodynamic forces on particles can
be updated more frequently. In addition, when the fluid velocity is
normalized by the term /x t, the resultant fluid velocity in lattice units
is also reduced. In this way, the Mach number drops as decreases,
resulting in smaller compressibility errors for the fluid solution. When

Fig. 5. 2D sketch of a Poiseuille flow past a fixed particle positioned at one-
quarter of the distance between the two parallel solid walls.

Fig. 6. Relative errors for the hydrodynamic force and torque against the lattice
resolution N for simulations with various nsub values. The results with nsub =5
(filled symbols) are connected to show the convergence of the numerical results
as N increases. The relaxation time is fixed at = 1.0.

Fig. 7. Relative force and torque errors against the relaxation time at lattice
resolutions N =5 and N =20.
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the fluid viscosity is small and the Reynolds number is high, an ex-
tremely small value (but greater than 0.5) needs to be used so that the
compressibility error is small enough. For example, a simplified la-
boratory model of vacuum dredging systems for mineral recovery was
simulated by LBM-DEM and the relaxation time was set to be 0.5002
[25]. In the case of soil erosion in granular filters, a value as small as
0.5000005 was adopted [30,35].

When the fluid is coupled with the particles, the relaxation time has
a significant influence on the no-slip boundary conditions [26,51–53].
In order to examine this issue, the streamwise velocity profiles at the
center line, as shown in Fig. 5, are plotted in Fig. 8 for simulations with
various relaxation times. The streamwise velocity ux is normalized by
the theoretical maximum flow velocity Umax in the absence of the par-
ticle. The inserted figure shows the distribution of the solid ratio.

As shown in Fig. 8, when is large and close to 1.0, the fluid mo-
mentum is able to diffuse into the solid particle, producing non-zero
flow velocities at the solid cells (with = 1). As decreases from 1.0 to
0.53, the flow velocities at the solid cells decrease to nearly zero values,
indicating a highly improved no-slip boundary condition. As a result,
the involved hydrodynamic interactions via momentum exchange be-
tween the fluid and the solid particle are also better described as
decreases. This result agrees with previous findings that the erroneous
slip velocity increases with the relaxation time when the bounce-back
boundary condition is applied [26,46]. Due to this diffusion effect of
fluid momentum, the fluid field can only feel a transparent particle,
resulting in the underestimated drag force especially when is large,
which agrees with the results in Fig. 7.

The relaxation time can also affect the LBM-DEM results via the
weighting function B ( , ), as shown in Fig. 3(c). As the relaxation time
increases, the B- curve shifts upwards, resulting in a more solid-like

behavior for the partially saturated cells. However, the currently
adopted weighting function is still not able to adequately compensate
for the weakened fluid-particle interaction due to the diffusion effect.
The relaxation time dependence can be alleviated by adopting a two-
relaxation-time collision operator [52] or a modified weighting func-
tion [53]. According to our results, a super-linear relationship between
B and can be proposed in future to potentially increase the accuracy of
the LBM-DEM model when increases.

3.1.4. Computational cost
The calculated hydrodynamic force and torque from several selected

LBM-DEM simulations and the relative errors compared to Happel and
Brenner’s estimation [49] are listed in Table 2. All cases are simulated
with two compute nodes, each of which is equipped with two 10-core

Intel Xeon E5-2600 v3 processors and 96 GB physical memory. The
total simulation time, T, is presented at the last column of Table 2 in
minutes. We can identify two parameters that play a major role in the
computational demand, including the lattice resolution N and the re-
laxation time . Generally speaking, the computational cost increases
rapidly as N increases and decreases. In return, the accuracy of the
LBM-DEM model is usually improved.

3.2. Particle settling in an ambient fluid

3.2.1. Problem description
In order to test the sub-cycling scheme and the additional numerical

error caused by particle moving across multiple lattice cells, the case of
a single heavy particle settling in an ambient fluid is simulated, as
shown in Fig. 9. The numerical test setup is the same as the physical
experiment conducted in [34]. A particle with diameter dp =15mm is
released at an initial height h0 =120mm in a container filled with
fluid. The initial velocity is set to be zero. The container has a dimen-
sion of 100mm, 160mm, and 100mm in x y, and z directions, re-
spectively. During the sedimentation of the particle, the settling velo-
city v and the distance to the bottom of the container h are recorded.

We have repeated the same experiments referenced in [34] with
four different particle Reynolds numbers: Re=1.5 (E1), 4.1 (E2), 11.6
(E3) and 31.9 (E4), based on the terminal velocity of the particle in an
infinite fluid field (vinf ), by varying the fluid density and viscosity. The
lattice resolution and the relaxation time are correspondingly set to be
20 and 0.56 for all four cases, which gives the LBM time steps equal to
2.93E-5 s, 5.12E-5 s, 9.58E-5 s and 1.86E-4 s for E1 to E4, respectively.
The solid walls in all directions are set as no-slip boundary conditions
using the bounce-back method [51].

3.2.2. Results and discussion
Fig. 10 shows the comparison between the calculated numerical

results and the measured experimental data in terms of the particle
trajectory and the evolution of settling velocity. It can be seen that for

Fig. 8. Profiles of the normalized streamwise velocity at the section in y-di-
rection going through the center of the particle from LBM-DEM simulations
with various relaxation times: = 0.53, 0.62, 0.8 and 1.0. The lattice resolution
is N =5.

Table 2
Comparison between the LBM-DEM results and Happel and Brenner’s estima-
tion [49] in terms of the hydrodynamic force and torque acting on a fixed
particle in Poiseuille flow. The analytical solutions for the hydrodynamic force
and torque are 5.7628E-12 N and 8.1537E-16 N·m, respectively.

N nsub Fx (E-12 N) Tz (E-
16 N·m)

Error Fx (%) Error Tz (%) T (min)

5 5 1.0 4.7375 5.5904 17.7910 31.4374 0.58
10 5 1.0 5.3606 7.2359 6.9793 11.2560 8.53
20 5 1.0 5.5462 7.7928 3.7595 4.4260 182.52
25 5 1.0 5.5709 7.8732 3.3305 3.4398 482.77
20 2 1.0 5.5553 7.8202 3.6016 4.0905 184.05
20 4 1.0 5.5484 7.8001 3.7203 4.3372 173.90
20 10 1.0 5.5476 7.7986 3.7343 4.3546 180.15
20 5 0.8 5.5829 7.9051 3.1223 3.0488 296.75
20 5 0.62 5.6166 8.0031 2.5379 1.8471 721.40
20 5 0.53 5.6385 8.0608 2.1564 1.1390 4312.90

Fig. 9. Sketch of a single heavy particle settling in an ambient fluid.
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the case E1 with a low Reynolds number and high fluid viscosity, the
settling velocity first increases until a maximum and constant value
(vmax) is reached, at which the weight of the particle is balanced by the
buoyancy force and the drag force. After that, the particle velocity
decreases slowly as it approaches the bottom solid wall due to the ad-
ditional force produced by lubrication effects [54]. For the case E4 with
a high Reynolds number and small fluid viscosity, the particle settles
with a much higher acceleration and velocity, and then decelerates
quickly. A settling period with stable terminal velocity is barely ob-
served. All in all, the agreement between the numerical results and the
experimental data serves as the evidence for the reliability of the pre-
sented coupling scheme for problems with moving particles in a viscous
fluid.

In order to further confirm the influences of lattice resolution N and
relaxation time discussed in Section 3.1, we simulate the case E1 with
different N and values, and the particle settling velocity at near wall
approach is presented in Fig. 11. When N is small or is large, the
repulsive lubrication force on the particle at bottom approach is under
predicted (see Figs. 6 and 7). As a result, the flow is not well resolved
and the particle stops abruptly. It is reported that this abrupt stop re-
mains even if the lattice resolution is increased in the ME method [34].
An artificial lubrication force model can be incorporated into the ME
method to improve the velocity decay [15,34]. However, it also brings
in a problem that the sedimentation time extends further and becomes
unrealistically long (the magnitude of lubrication force can be huge
when the gap is small). In contrast, Fig. 11 clearly shows that a smooth
velocity decay can be achieved if the IMB method is adopted with a
high enough N and an adequately small . Unlike the ME method, a

layer of fluid is solved by the partially saturated cells when <h x . The
ability to solve fluid-particle interactions when solids move in close
vicinity highlights the SGS resolution of the IMB method and makes
LBM-DEM coupled by IMB an adequate numerical tool to simulate
immersed dense shear flows (see Section 4).

The numerical convergence is assessed regarding the velocity ratio,
which is defined as v v/max inf , as shown in the insets of Fig. 11. As N
increases (above 20) and decreases (below 0.56), a convergent velo-
city ratio can be achieved. Note that vmax in the LBM-DEM simulation
turns out to be smaller than vinf due to the hindrance from the side
walls.

The case E1 is also simulated with different number of sub-cycles
(Nsub =1, 10, 100, 1000) and the evolution of particle settling velocity
is plotted in Fig. 12(a). N and are fixed to be 20 and 0.56, respectively.
Nsub =1 means that every cycle of LBM simulation is accompanied with
one cycle of DEM calculation. In our coupling scheme, the LBM time
step t is first determined based on the predefined lattice resolution,
relaxation time and fluid viscosity, see Eq. (5). The increase in Nsub only
reduces the DEM time step t for a better DEM stability. In other words,
the frequency of momentum exchange between the fluid and the solid
particle remain unchanged in terms of physical time (independent on
Nsub). Therefore, when Nsub =1, t is too large that the solid particle
moves more than it should within one DEM time step. Consequently,
the solid particle settles quickly with a maximum velocity almost twice
of the accurate value, as shown in Fig. 12(a). The problem can be well
addressed by increasing Nsub. And there is no observable difference
between the cases with Nsub =100 and Nsub =1000, indicating that a
stable DEM solution is obtained. Besides, Fig. 12(b) shows little

Fig. 10. Comparison between the simu-
lated and measured results regarding to (a)
the particle settling trajectory and (b) the
particle settling velocity evolution. Four
different cases are simulated, including E1
(Re= 1.5), E2 (Re= 4.1), E3 (Re= 11.6)
and E4 (Re= 31.9). The lattice resolution
and the relaxation time are set to be 20 and
0.56, respectively.

Fig. 11. Particle settling velocity v at near wall approach in the case E1 affected by (a) the lattice resolution N ( is fixed to be 0.56) and (b) the relaxation time (N is
fixed to be 20). The insets show the influences of N and on the velocity ratio v v/max inf .
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influence of the number of sub-cells nsub on the particle settling velocity,
which agrees with our observation in Section 3.1.

3.3. Flow through densely packed particles

3.3.1. Problem description
In order to examine the accuracy of the LBM-DEM model in pro-

blems involving multiple solid particles, a flow through a densely
packed granular medium is simulated, as shown in Fig. 13. The granular
medium consists of monodispersed particles with diameter dp =1mm
packed in a simple cubic arrangement. The fluid has a density

f =1000 kg/m3 and a dynamic viscosity µf =0.001 Pa·s. The granular
medium has a dimension of 10dp, 5dp and 5dp in x y, and z directions,
respectively. An additional one dp of spacing is left at the inlet and
outlet for the development of inflow and outflow. Periodic boundaries
are defined in all directions. The flow is driven from left to right by
seven different pressure differences ( P), including 1 Pa, 5 Pa, 10 Pa,
20 Pa, 50 Pa, 100 Pa and 200 Pa. Again, the lattice resolution is set to be
N =20. As P increases, the fluid velocity also increases, therefore a
smaller relaxation time is required to reduce the compressibility error.
In order to keep the maximum fluid density variation below 1%, the
relaxation time is gradually reduced by following the order of 0.58,
0.53, 0.524, 0.516, 0.51, 0.508 and 0.505 with the increase of P. All
simulations last for 5 s, which is long enough to allow the flow to be
fully developed.

The total pressure loss can be described by the well-known Ergun
equation [3] which is composed of two terms: a viscous loss propor-
tional to the fluid velocity and an inertial loss proportional to the square
of the fluid velocity, given by:

= +P
L
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where L is the length of the granular medium and equal to 10dp. The
porosity is denoted as f and equal to 0.4764. The superficial fluid
velocity is denoted as U.

Following Niven [55], Eq. (21) can be rewritten in the form of:
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where f is known as the packed bed friction factor. Rep is a modified
particle Reynolds number based on the interstitial fluid velocity, which
is given by:

=
d U

µ
Re
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.p

f p

f f (23)

3.3.2. Results and discussion
LBM-DEM simulations are conducted, and the resultant friction

factor f is plotted against the modified particle Reynolds number Rep
in Fig. 14, together with the empirical Ergun equation, i.e. Eq. (22).
Han and Cundall [28] verified their LBM-DEM model against the Ergun
equation based on a different configuration. Instead of simulating a
flow through densely packed particles, a single particle was extracted
from a porous medium and simulated with periodic boundaries defined
in all directions. The result from a periodic particle model is also plotted
in Fig. 14 for comparison. It can be seen that both the porous medium
model and the periodic particle model can well predict the friction
factor f over a wide range of Reynolds number Rep. It is quite en-
couraging based on the fact that the LBM-DEM model only resolves the

Fig. 12. Influences of (a) the number of sub-cycles Nsub; and (b) the number of sub-cells nsub on the time evolution of particle settling velocity v in the case E1. N and
are fixed to be 20 and 0.56, respectively, so they give a constant LBM time step t =2.93E-5 s.

Fig. 13. Numerical setup of flow through densely packed particles in a cubic
arrangement.

Fig. 14. Comparison between the LBM-DEM results and the Ergun equation in
terms of the packed bed friction factor f at various modified particle Reynolds
numbers Rep.
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local fluid-particle interactions at the pore-scale, while the Ergun
equation describes the overall resistance on the fluid field from the
whole porous structure. In other words, the macroscopic behavior is
automatically recovered from the microscopic fluid-particle interac-
tions.

The porous medium model in this study is found to yield better
accuracy compared to the periodic particle model when Rep is greater
then 40. However, both LBM-DEM simulations tend to underestimate
the friction factor f at high Rep. It is probably due to the unresolved
turbulence when the fluid inertia becomes significant. One solution is to
further increase the lattice resolution N so that more eddies can be
resolved adequately well [20]. However, the increase in N could make
the LBM-DEM simulation computationally prohibitive (see Section
3.1.4). Alternatively, a turbulence model can be incorporated into LBM
to capture the effects from unresolved small eddies without sacrificing
the efficiency [14,23,25,56]. For the purpose of simulating the granular
collapse in Section 4, the incorporation of a turbulence model yields
little influence on the overall collapse behavior. For high-Re flows, such
as fluidized beds, using the turbulence model could potentially improve
the accuracy without significantly increasing the computational cost.

Different from the previous two cases, which involve only one single
particle, the whole fluid field is covered by a much larger percentage of
partially saturated and solid cells in the flow through a porous medium.
Simulations with nsub =2, 5 and 10 have been carried out. Again, the
accuracy is barely affected when a lattice resolution as high as N =20
is adopted. Nevertheless, the computational time increases by 15% and
38% as nsub increases from 2 to 5 and 10, respectively.

3.4. Couette flow of particle suspensions

3.4.1. Problem description
In an immersed granular collapse, the dynamics of the fluid-particle

mixture is governed by particle–particle interactions either by direct
contact or via the interstitial fluid. To highlight the capability of the
proposed LBM-DEM model in capturing the complex fluid-particle in-
teractions, a problem involving multiple and movable particles sub-
merged in a fluid is simulated. Fig. 15 shows a concentrated suspension
of neutrally buoyant and monodispersed particles with diameter
dp =1mm. The fluid density and dynamic viscosity are set to be

f =1000 kg/m3 and µf =0.001 Pa·s, respectively. The simulation
domain has a size equal to 10dp, 10dp and 5dp in the x y, , and z di-
rections, respectively. The flow is driven by moving the top and bottom
solid walls to the right and to the left with a constant velocity
uw =0.001m/s. Periodic boundaries are defined in the x and z

directions. In this way, an average shear rate, , in the fluid can be
calculated, as:

= u
H

2 ,w
(24)

where H is the distance between the two parallel solid walls. The wall
shear stress, w, is given by:

= µ .w f (25)

Eq. (25) is usually applied to measure the fluid viscosity via rhe-
ometers. And for a pure Newtonian fluid, µf remains constant, in-
dependent on the magnitude of shear rate. However, if there are par-
ticles suspended in the fluid, the rheology of the mixture becomes
different from that of the pure fluid. Generally speaking, the apparent
viscosity of the particle suspension µf increases as the solid volume
fraction p increases. The relationship between µf and p was first de-
scribed by Einstein [57], written as:

= +µ µ( ) (1 2.5 ).f p f p (26)

Einstein’s viscosity equation is deduced with the assumption of
negligible interactions among solid particles. Therefore, Eq. (26) is only
valid for extremely dilute systems. Following Einstein, researchers have
spent huge efforts trying to extend Einstein’s viscosity equation to
suspensions with finite concentrations. According to the classic work
from Mooney [57], the apparent viscosity of a suspension of mono-
dispersed particles is:

=µ µ
k

( ) exp
2.5

1
,f p f

p

p (27)

where k is the self-crowding factor. If mechanical interlocking takes
place at the densest possible state, which is the face-centered cubic
packing with p =0.74, the apparent viscosity becomes infinitely large.
Then, k takes the value of 1.35.

In this study, six simulations have been carried out with the solid
volume fraction p =0.0, 0.0199, 0.0503, 0.0953, 0.1414 and 0.1571.
The particles are created with zero initial velocity. Again, the fluid-
particle interaction is solved with a lattice resolution N =20. The re-
laxation time is set to be 0.8. The number of sub-cycling and sub-cells
are set to be 100 and 5, respectively. All simulations last for 14 s so that
a steady state can be obtained.

3.4.2. Results and discussion
Fig. 16 shows the spatial distribution of the velocity difference

u u( )0 normalized by the wall velocity uw, where u is the calculated
flow velocity averaged in the x and z directions and u0 is the theoretical
linear profile for the case of pure fluid. First of all, when p =0.0, the
theoretical linear distribution of the Couette flow velocity is well

Fig. 15. 2D sketch of a concentrated suspension undergoing planar Couette
flow.

Fig. 16. Spatial distribution of the normalized velocity difference, u u u( )/ w0 ,
across the planar Couette flow of suspensions with various solid volume frac-
tions.
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recovered by the LBM solver, which is evidenced by the zero
u u u( )/ w0 value as y H/ goes from 0.0 to 1.0. As p increases, the
amount of fluctuation also increases, showing a non-Newtonian beha-
vior. Particularly, the concentrated suspension with a higher solid vo-
lume fraction p has a steeper velocity gradient close to the top and the
bottom solid walls.

The strain rate at the solid boundaries are calculated from the wall
velocity uw and the flow velocity at the nearest-neighbor fluid node u , ,
see Fig. 15, where the subscripts and are the spatial indices in x and
z directions. Make n and n be the number of lattice nodes in the x and
z directions, respectively, the apparent wall shear stress w is given by:

= =µ
µ u u

n n

| |/
.w f

f

n n

w x
1 1

,

(28)

The inset of Fig. 17 shows a typical development of the apparent
wall shear stresses w when the solid volume fraction is p =0.1414. At
the early stage, additional momentum is required to bring the sta-
tionary particles into motion. The reaction forces acting on the fluid
field result in high shear stresses at the solid walls. As time goes by, the
particles gradually accelerate and the wall shear stresses gradually
decrease until a steady state is reached, which is about 8 s after the start
of simulation. In order to calculate the apparent fluid viscosity using Eq.
(28), we take the averaged wall shear stress w at the top and the
bottom solid walls, which is further averaged over the time interval
between 8 s and 14 s.

Fig. 17 shows the variation of the relative viscosity ratio, µ µ/f f , with
the solid volume fraction. The error bar indicates the standard devia-
tion of the LBM-DEM result due to temporal variations. Einstein’s and
Mooney’s viscosity equations are also plotted for comparison. It can be
seen that Einstein’s equation only fits the data when p is roughly
smaller than 0.02. While the LBM-DEM result agrees well with
Mooney’s equation for the whole range of p tested in this study.

3.5. A guideline for model setup

We would like to conclude this section by providing a simple
guideline for setting up an accurate and stable LBM-DEM model to si-
mulate an underwater granular collapse in Section 4.

First of all, it is recommended that a resolution of 20 lattice cells
across one particle diameter (N =20) shall be used so that a highly
accurate 3D LBM-DEM simulation can be achieved within the laminar
and transition regimes. It is also found that the accuracy of solid ratio
calculation for partially saturated cells does not have a significant effect

on the LBM-DEM results, as long as an adequate lattice resolution is
used. A resolution of 5 sub-slices (nsub =5) is high enough to offer a
good estimation when the cell decomposition method is adopted.

Second, the relaxation time shall be chosen depending on the
Mach number. When the fluid velocity is large, the Mach number is
large, a smaller value is required to keep the compressibility error
small. An initial relaxation time equal to 1.0 can be taken for the first
trial of the LBM-DEM simulation. If the fluid density variation f is too
large, simulations with smaller values, larger than the lower limit 0.5,
need to be conducted.

Third, the increase in Nsub only reduces the DEM time step, without
changing the frequency of momentum exchange between the fluid and
solid particles. For each predefined , a large enough Nsub value should
be adopted so that a convergent DEM solution can be achieved. After
that, the particle displacement during one LBM-DEM cycle, p, should
be checked so that p is small, e.g. <p x according to [26]. If p is
larger than the specified criterion, the relaxation time needs to be
further reduced so that t gets smaller and thereby achieving a more
frequent synchronization between LBM and DEM. However, a decrease
in the relaxation time also comes with higher computational cost.

All in all, a successful LBM-DEM model is achieved only if the fluid
flow is solved accurately with a small compressibility error (small f )
and the solid particle positions are remapped frequently (small p). In
practice, it is always suggested to conducted an additional simulation
with a smaller value to double check the overall convergence. Note
that there exist other methods to determine the fluid and particle time
steps independently according to their own stability criteria [23,25,26],
which, however, may lead to very small time steps and thus unafford-
able computational cost in LBM-DEM, especially for large granular
packings (e.g. our immersed granular collapse problem). In this regard,
we propose an approach to quickly find the most affordable time steps
for LBM and DEM, which also guarantees convergence of numerical
results. In fact, in immersed dense granular flows, the original stability
criterion for DEM can often be relaxed because fluid-particle interac-
tions dominate over particle–particle collisions, a conclusion made in
our recent numerical study [36].

4. Application to immersed granular collapse

In Section 4, the guideline proposed in Section 3.5 is applied to
simulate an immersed granular column collapse using LBM-DEM. The
numerical results are verified against experimental data.

4.1. Laboratory and model configurations

In the laboratory test, glass beads (GBs) are placed behind a gate in
a 50× 30× 20 cm transparent Perspex tank. The GBs have a mean
diameter dp =1.436mm with a weak polydispersity of 10% standard
deviation following a Gaussian distribution. The density is measured to
be 2468 kg/m3. To initiate the granular column collapse, the gate is
rapidly lifted up by a pulley system. The evolution of granular flow is
videotaped by a camera of resolution 1920 by 1080 pixels at 30 frames
per second so that the free surface and the runout distance can be ex-
tracted with time.

In LBM-DEM, the simulation domain is reduced to 10× 5× 1.5 cm to
save computational time. The reduced domain is considered large en-
ough as periodic boundaries are set in the z-direction with
lz =1.5 cm> 10dp so that the finite size effect is negligible. The size of
DEM particles match with the GBs used in the companion experiment.
Fig. 18 shows the comparison between the experiment and the nu-
merical model in terms of the particle size distribution (PSD) curves. It
can be seen that the three PSD curves of GBs determined by the QICPIC
(Sympatec GmbH) analysis almost overlap with each other, showing a
consistent statistical result. Besides, the PSD of the DEM particles fol-
lows the GBs quite well, with only a slightly higher percentage at
around dp =1.2mm.

Fig. 17. Comparison between the LBM-DEM numerical results with Einstein’s
and Mooney’s viscosity equations in terms of the relative viscosity ratio, µ µ/f f ,
at various solid volume fractions. The error bar shows the standard deviation of
the numerical results. The inserted figure shows a typical evolution of the ap-
parent shear stresses at the top and the bottom solid walls since the start of the
simulation, when p =0.1414. A steady state is reached after 8 s.
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The granular column in LBM-DEM is prepared via the following
steps. First, particles with a reduced initial diameter (mean equal to
0.5dp) are created in a space behind the gate placed at x= Li =3 cm.
The initial particle velocity is zero, and there is no initial contact. All
particles are then gradually enlarged until the mean size dp is achieved.
Second, a reduced gravitational acceleration g ( )p f / p, with
g =9.81m/s2, is applied to make particles settle under water. During
this sedimentation stage, the friction coefficient µ is set to be 0.0 to
achieve a dense packing. Third, once all particles are well settled down
and concentrated at the lower part of the simulation domain, the fric-
tion coefficient µ is adjusted to 0.4. Additional DEM cycles are per-
formed until the total kinetic energy of the particles is negligible. After
that, the particles located above =y Hi =3.14 cm are deleted so that a
granular column with an initial aspect ratio equal to H L/i i =1.05 is
obtained. Again, the granular systems are cycled to an equilibrium
state. Finally, the linear and angular velocities of all particles are set to
zero. The initial condition of the granular column can be seen in
Fig. 19(a). The simulation lasts for 0.8 s of physical time at which
particles almost stop moving with the overall particle kinetic energy
Ek < 2.5× 10−10 J. Fig. 19(b) shows the final deposit of the granular
particles at the end of the simulation.

In the experiment, an 80 Cw grit size sandpaper is glued to the
bottom wall to make the base rough. Correspondingly, a layer of par-
ticles with a uniform size equal to 1mm is glued at the bottom to mimic
the basal roughness in the simulation [58]. The basal particles follow a
simple cubic arrangement. All DEM particles have the same density as
the GBs, i.e., p =2468 kg/m3. For particle–particle and particle–wall

collisions, a Young’s modulus and a Poisson’s ratio equal to 109 Pa and
0.24, respectively, are adopted. The coefficient of restitution is 0.65,
according to the property of glass. The granular column is fully im-
mersed in water with density f =1000 kg/m3 and dynamic viscosity
µf =0.001 Pa·s. The top surface is set to be a free-slip boundary con-
dition, while no-slip boundary conditions are defined for the bottom
wall, and the side walls facing the x-direction.

Other model parameters involved in the LBM-DEM algorithm can be
chosen following the guideline provided in Section 3.5. The spatial
resolution and the number of sub-cells are specified as N=20 and

=n 5sub , respectively. The relaxation time is selected to be =0.503,
resulting in the LBM time step = 5.16·10t

6 s. Following Eq. (17) with
Nsub =100, the calculated DEM time step is =t 5.16·10 8 s. Table 3
summarizes the key model parameters.

4.2. Collapse dynamics and runout

The free-surface of the GBs in the experiment can be automatically
detected according to the contrast in brightness using the MATLAB
image processing toolbox (the GBs are brighter while the background

Fig. 18. The dashed lines with symbols show the PSD curves of three individual
batches of glass beads used in the experiment, which is determined by the
QICPIC analysis. The solid line without symbol shows the PSD curve of the DEM
particles in the simulation.

Fig. 19. Model configuration of a granular column collapsing in water: (a) initial condition; (b) final deposition (H L,i i: initial height and length of the granular
column; l l l, ,x y z : length, height and width of the simulation domain; H L,f f : final height and length of the granular column).

Table 3
Model parameters used in 3D LBM-DEM simulation of a granular column col-
lapse in water.

Parameters Values

Particle Diameter, dp Polydisperse flowing particles:
1.436mm ± 10%
Monodisperse fixed basal particles:
1.0mm

Density, p 2468 kg/m3

Young’s modulus, E 109 Pa
Poisson’s ratio, 0.24
Coefficient of
restitution, e

0.65

Coefficient of friction,
µ

0.4

Fluid Density, f 1000 kg/m3

Dynamic viscosity, µf 0.001 Pa·s

Simulation box Length, lx 0.1m
Height, ly 0.05m
Width, lz 0.015m

Resolution DEM time step, t 5.16·10 8 s
LBM time step, t 5.16·10 6 s
Lattice spacing, x 0.0718mm
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fluid field is much darker), as shown in Fig. 20(a)–(c) at t=0.2 s, 0.3 s
and 0.4 s. In the numerical simulation, the interface between the DEM
particles and the water can be determined by a cut-off local porosity
equal to 0.8, above which we consider as pure water. Fig. 20(d)–(f)
compare the experimental data and the numerical results in terms of the
free surface of the granular phase at t=0.2 s, 0.3 s and 0.4 s. Excellent
agreement is achieved. The small discrepancy at the early stage
(t=0.2 s) is attributed to the gate removal effect in the experiment,
which is not simulated in the numerical model.

The front positions of the GBs and the DEM particles are determined
from the free-surface profiles and normalized by the initial length Li,
which are compared in Fig. 21. There are fluctuations observed for the
experimental data mainly because the brightness contrast at the surge
front of the GBs is relatively low, for example, in Fig. 20(c), making it
difficult to determine the exact position of the surge front. Apart from
this, the numerical results agree with the experimental data very well.
By explicitly setting the model parameters according to the guideline in
Section 3.5, we can easily capture the complex dynamics of the im-
mersed granular column collapse accurately, without much effort in
tuning the parameters.

5. Concluding remarks

This study presents a numerical simulation of the dense granular
shear flows immersed in a viscous fluid. A 3D coupled LBM-DEM
method is adopted, in which the particle motion in a granular system is
solved by DEM, while LBM is applied to solve the hydrodynamics of
fluid flows. The interaction between DEM particles and the LBM fluid is
achieved by an immersed moving boundary technique, based on the
conservation of momentum. Different from CFD-DEM and continuum
methods based on the mixture theory, the presented LBM-DEM model is
able to explicitly resolve the pore-scale fluid flow and the complex
fluid-particle interactions in an efficient manner. The following con-
clusions are drawn:

• To capture the transient dynamics of an immersed granular collapse,
the LBM-DEM model is first validated against four benchmark cases.
A parametric study is carried out to examine various sources of
numerical errors. It is found that at least 20 lattice cells per one
particle diameter shall be used so that the errors in viscous drag and
torque are below 5%. A small relaxation time greater than the lower
limit 0.5 shall be used to ensure a small fluid compressibility error
and to strengthen the degree of coupling between fluid and particles
if the computational cost is affordable. As long as the fluid-particle
interaction is resolved adequately in space and time (high N and
small ), the lubrication effects can be well captured benefiting from
the SGS resolution of the IMB method, without the need of an ar-
tificial lubrication model for immersed dense shear flows.
• A guideline is proposed to quickly establish a LBM-DEM model for
immersed granular collapses with high accuracy, stability and effi-
ciency. More efforts might be required to further extend the
guideline to more specific applications, for example, particles tra-
velling in turbulent flows and erosion of well graded soils.
• Following the proposed guideline, the LBM-DEM method is applied
to simulate a granular column collapse in water. A companion ex-
periment is also carried out for comparison. It is found that the LBM-
DEM model can successfully capture the collapse dynamics, which
highlights the potential of using the LBM-DEM method to study the
pore-scale physics involved in large-scale geophysical flows.

Fig. 20. (a–c) Snapshots of the immersed granular
column collapse in the experiments at t=0.2 s,
0.3 s, and 0.4 s, respectively. The green lines depict
the free-surface of the granular flow; (d–f) compar-
ison of the granular flow free-surface between the
experiment and the LBM-DEM simulation at
t=0.2 s, 0.3 s, and 0.4 s, respectively.

Fig. 21. Comparison of the normalized front position, L L L( )/i i, between the
experimental data and the numerical results.
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With the current computational power, the use of LBM-DEM is still
limited to simulations with a modest number of particles. To directly
simulate large-scale geophysical flows, one of the available options is to
adopt a continuum approach. In this regard, LBM-DEM can be a handy
tool to derive rheological models that can be incorporated into the
continuum framework to bridge micro and macro scales.
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