
Neural Processing Letters (2024) 56:233
https://doi.org/10.1007/s11063-024-11620-1

A Neural Network-Based Poisson Solver for Fluid Simulation

Zichao Jiang1 · Zhuolin Wang1 ·Qinghe Yao1 · Gengchao Yang1 · Yi Zhang2 ·
Junyang Jiang1

Accepted: 6 April 2024
© The Author(s) 2024

Abstract
The pressure Poisson equation is usually the most time-consuming problem in fluid simula-
tion. To accelerate its solving process, we propose a deep neural network-based numerical
method, termed Deep Residual Iteration Method (DRIM), in this paper. Firstly, the global
equation is decomposed into multiple independent tridiagonal sub-equations, and DRIM is
capable of solving all the sub-equations simultaneously. Moreover, we employed Residual
Network and a correction iteration method to improve the precision of the solution achieved
by the neural network in DRIM. The numerical results, including the Poiseuille flow, the
backwards-facing step flow, and driven cavity flow, have proven that the numerical precision
of DRIM is comparable to that of classic solvers. In these numerical cases, the DRIM-based
algorithm is about 2–10 times faster than the conventional method, which indicates that
DRIM has promising applications in large-scale problems.

Keywords Pressure Poisson equation · Deep neural network · Deep residual iteration
method · Fluid simulation

1 Introduction

In a simulation of an incompressible fluid, the velocity and pressure are coupled and cause
an inevitable implicit process. In well-known algorithms, e.g. SIMPLE, PISO [1], the cou-
pled pair of velocity and pressure are solved via the “prediction-correction process”: first,
the velocity is predicted based on the non-pressure terms or initial pressure; secondly, the
pressure is achieved via solving the Poisson equation and then the velocity is corrected by
the pressure gradient. In this routine, the pressure Poisson equation (PPE) is usually the most
time-consuming and challenging problem of some numerical methods for the Naiver Stokes
equations [2, 3].

In recent years, neural networks (NN), especially deep neural networks (DNN), have
been widely employed in natural language processing [4], computer vision [5], and other

B Qinghe Yao
yaoqh@sysu.edu.cn

1 School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510275, China

2 School of Mathematics and Computing Science, Guilin University of Electronic Technology,
Guilin 541004, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11620-1&domain=pdf

 233 Page 2 of 22 Z. Jiang et al.

fields with the growth of computing power [6]. Specifically, NNs are readily trainable uni-
versal function approximators [7] that satisfy high-dimensional and complex problems. In
the fields of scientific computation, the universal approximation properties of NNs provide
an alternative approach for solving partial differential equations (PDEs) [8–15].

Currently, most of the NN-based solvers focus on formulating PDEs as optimization
problems, and their critical component is to design a suitable loss function [8]. For instance,
the deep Galerkin method (DGM) [13], the deep Ritz method (DRM) [14], and physics-
informed neural network (PINN) [15] have unique loss functions based on the least-squares,
the Ritz method, the collocation methods, respectively. These methods can achieve a decent
accuracy; for example, an improved version of PINN, hp-VPINN [8], can reach an error (L2-
norm) of 10−4–10−5. Moreover, all these methods are valid for high-dimensional equations,
avoiding the curse of dimensionality. In recent years, a number of other updated versions
of PINN have also been published and successfully utilized in a variety of fields [16–18].
Although these methods have the remarkable superiority mentioned above, they all require
repeated training for different equations, which is inappropriate for solving the PPE.

This manuscript presents anNN-basedmethod to solve the PPEwithout repetitive training
to accelerate the SIMPLE algorithm. Although the training of the network can be compu-
tationally intensive and time-consuming, it is done offline [19] and only once for a given
category of problems. Specifically, after determining the equation size and non-zero element
distribution, we use random equations for training. For equations with the same structure,
additional repetitive training is unnecessary. This characteristic is particularly effective for
simulations involving time iterations, as the equations to be solved often do not change in
size over time. Hence, the trained model can be directly applied to solve all types of equa-
tions of the same size. The basic idea of our method can be divided into three steps: (i)
transforming the discrete Poisson equation into a series of multi-diagonal equations, as fre-
quently employed by multiple large-scale numerical solvers [3, 20–22]; (ii) transforming the
multi-diagonal equations into a set of vectors as the input of our DNN model to predict the
solution; (iii) improving the numerical accuracy of the achieved solution.

Specifically, we employed the discrete sine transformation (DST) [23] to convert the
2nd-order central difference scheme of the Poisson equation into a series of independent
tridiagonal equations. An arbitrary tridiagonal equation can be represented wholly and natu-
rally by four vectors, and thus, can be directly served as the input of the NNmodel. Actually,
by adjusting the architecture of the input layers, the NN model can solve all the equations
with a similar structure, which includes all multi-diagonal matrices. This implies that the
NN-based method has potential advantages for higher-order schemes and complex geome-
tries.

In recent years, several published works follow the above path; for instance, a solver
based on convolutional neural networks (CNN) was proposed by Xiao et al. [2]. This CNN-
based solver reduces the dimension of the input through principal component analysis (PCA),
enabling the two-dimensional Poisson equation to be passed directly into the CNN model.
Despite its high numerical error (10−2–10−1), it still demonstrates that the NN-based Poisson
solver is a promising path.

For high-efficiency transient simulations of incompressible flow, we mainly focused on
the accuracy of the pressure. In this research, we constructed a DNN model that solves the
discrete Poisson equation and employed a series of techniques to enhance its accuracy. This
method we proposed is called deep residual iteration method (abbreviated as DRIM) and the
basic components of DRIM can be divided into two parts:

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 3 of 22 233

(1) Residual connection [24], a widely used network structure that resolves gradient van-
ishing and network degradation;

(2) Correction iterations, an algorithm that reduces the error iteratively by feeding the resid-
ual of each predicted solution back into the NN model.

This paper is organized as follows. The main methods, including a DST-based SIMPLE
algorithm and DRIM, are introduced in Sect. 2. Section 3 demonstrates the high efficiency
and accuracy reliability of the proposed method in this paper by applying it in a real fluid
simulation. Specifically, we achieve a long-term transient simulation of the flow field in the
opposing cavity based on the proposed method in this paper.

2 Methodology

In this section, we introduce our proposed DRIM-based fluid simulation method. In the
algorithm, we employ the SIMPLE algorithm as a framework and transform the global
PPE into a series of independent sub-equations by DST. Since each sub-equation is a tri-
diagonal linear system of equations, we directly utilize DRIM to solve all the sub-equations
simultaneously and assemble the solutions into the global pressure field. In addition, in
DRIM, to avoid network degradation and to improve the precision of the DNN model, we
adopt the Residual Network (Res-Net) architecture and the correction iteration process.

2.1 The DST-Based Transformation of the Poisson Equation

Incompressible Naiver-Stokes equation is the governing equation in the algorithm:{∇ · u = 0,
∂u
∂t + (u · ∇)u = −∇ p + ν∇2u,

(1)

where u is the flow velocity, p is the fluid pressure, and ν is the kinematic viscosity. In (1),
the density of the fluid is assumed to be 1 and the mass force is assumed to be 0.

To maintain the incompressibility in (1), i.e., the divergence of the velocity is identically
equal to zero, the calculation of the velocity in the SIMPLE algorithm is decomposed into
the following three steps:

(a) Predict the velocity: the intermediate velocity

u∗ is calculated by

u∗ = un − �t∇un · un + ν�t∇2un, (2)

where �t is the time step, and the superscript n indicates the current time step.

(b) Calculate the pressure: the pressure is calculated by PPE, as

∇2 pn+1 = − 1
�t ∇ · u∗. (3)

(c) Correct the velocity: the velocity is corrected by the pressure term, as

un+1 = un + �t∇ pn+1. (4)

123

 233 Page 4 of 22 Z. Jiang et al.

In this work, we focus on the fast solving algorithm of the PPE shown in (3). As an elliptic
equation, the PPE has to be solved simultaneously over the entire field and have

(
Nx × Ny

)
degrees of freedom (where Nx , Ny are the number of nodes in each dimension) for a 2-
dimensional problem. Therefore, it is impractical to input all the node information into a
DNN model, and we employed a DST-based decoupling method as shown in Algorithm 1.

Algorithm 1 A DST-based SIMPLE method

It is worth mentioning that the proposed method in this paper is based on the finite
difference method (FDM) for discretization. In the algorithm shown in Algorithm 1, the PPE
is discretized via the five-point difference scheme with 2nd-order precision, that

1
�x2

(
pi−1, j − 2pi, j + pi+1, j

) + 1
�y2

(
pi, j−1 − 2pi, j + pi, j+1

) = fi, j , (5)

where �x and �y are the spatial steps in x and y directions, respectively. The source term
fi, j is the right-hand side of (5) and the linear equation of the non-boundary nodes can be
denoted by A p = f , where f is the source term, A is a block-tridiagonal matrix,

A =

⎡
⎢⎢⎢⎢⎣

T I

I T
. . .

. . .
. . . I
I T

⎤
⎥⎥⎥⎥⎦. (6)

It is necessary to note that the subscripts of the elements in the vector p are in the
sequence of

(
p1,1, p1,2, · · · , p1,m, p2,1, · · · , p2,m, · · · , pm,m

)
, the same for f . In (6), T is a

tridiagonal matrix, while I is an identity matrix. The specific form of thematrix T depends on
the boundary conditions, for instance, the matrix T corresponding to the Dirichlet boundary
can be calculated by

T =

⎡
⎢⎢⎢⎢⎣

−2(c + 1) c

c −2(c + 1)
. . .

. . .
. . . c
c −2(c + 1)

⎤
⎥⎥⎥⎥⎦, (7)

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 5 of 22 233

where the constant c = �y2/�x2. The matrix T in (7) has the eigen decomposition in the
form of

QT QT = � = diag(λ1, λ2, . . . , λm), (8)

where the matrix Q consisting of the eigenvectors of the matrix, � = diag(λ1, λ2, . . . , λm),
denotes the diagonal matrix filled by the eigenvalues. It has been proven that the matrix Q
consisting of the eigenvectors of the matrix T can be represented by the coefficient matrix
of DST, that

Q = [
Qi j

] = √
2/(m + 1) sin (i+1)(j+1)π

m+1 (i, j = 1, 2, . . . ,m). (9)

Therefore, after we define the block-diagonal matrix consisting of matrix Q as the global
transformation matrix QA = diag(Q, Q, . . . , Q), we can transform the original equation
into a tridiagonal equation shown by

Â p̂ = ŝ, (10)

where p̂ = QA p, ŝ = QAs, and the block-tridiagonal matrix Â is

Â = QAAQT
A =

⎡
⎢⎢⎢⎢⎣

� I

I �
.. .

. . .
. . . I
I �

⎤
⎥⎥⎥⎥⎦. (11)

In (10), if the sequence of the elements in p̂ and ŝ trans-
form into p̂

′ = (
p̂1,1, . . . , p̂m,1, p̂1,2, . . . , p̂m,2, . . . , p̂m,m

)
and ŝ

′ =(̂
s1,1, . . . , ŝm,1, ŝ1,2, . . . , ŝm,2, . . . , ŝm,m

)
, the left-hand matrix form as

Â′ = diag
(
Â1′, Â2′, . . . , Âm ′

)
, (12)

where the sub-matrixes are

Â j ′ =

⎡
⎢⎢⎢⎢⎣

λ j 1

1 λ j
. . .

. . .
. . . 1
1 λ j

⎤
⎥⎥⎥⎥⎦(1 ≤ j ≤ m). (13)

So far, we have transformed the global difference equation into a series of independent
tridiagonal sub-equations in the form of Â j ′ p̂′

j = ŝ
′
j , where p̂

′
j and ŝ

′
j are

(
p̂1, j , . . . , p̂m, j

)
and

(̂
s1, j , . . . , ŝm, j

)
, respectively. By DST, p̂ can be transformed into the pressure in the

original space, which has the discrete form shown as

p = QT
A p̂. (14)

The DST-based method for solving the Poisson equation introduced in this section decou-
ples a large global equation into multiple independent sub-equations, which decomposes the
large-scale problem into multiple smaller problems to facilitate parallel computation. Fur-
thermore, DST can be accelerated by a fast Fourier transformation (FFT) algorithm bringing
only minor computational work.

123

 233 Page 6 of 22 Z. Jiang et al.

2.2 The DNNModel

To solve the linear equations with the left-hand sidematrix as shown in (13), first, we consider
general matrices of the following form,

A = C((r1, r2, . . . , rn−1), (l1, l2, . . . , ln−1)) =

⎡
⎢⎢⎢⎣
1 r1
l1 1 r2

l2
. . . r(n−1)

l(n−1) 1

⎤
⎥⎥⎥⎦, (15)

where n is the size of the matrix. The mapping C : Rn−1 ×R
n−1 → R

n×n in (15) represents
the construction of a tridiagonal matrix with diagonal elements equal to 1 matrix using
off-diagonal elements.

The set of vectors (l, r, g) composed by the off-diagonal elements of A, where l =(
l1, l2, . . . , l(n−1)

)
, r = (

r1, r2, . . . , r(n−1)
)
, and the right-hand vector g, is a complete

representation of an arbitrary tridiagonal equation Ax = g. Therefore, we select these
vectors as the input to the DNN model.

The basic idea of DRIM is to treat theDNNmodel as a high-dimensional approximation of
themapping y = S(A, g) = A−1g. Specifically, the DNNmodelSNN inDRIM is comprised
of Nl hidden layers with Ni (i ≤ Nl) neurons in each layer that takes the following form

⎧⎪⎪⎨
⎪⎪⎩

R(r) = T1,NR ◦ · · · ◦ T1,2 ◦ T1,1(r),
L(l) = T2,NL ◦ · · · ◦ T2,2 ◦ T2,1(l),
G(g) = T3,NG ◦ · · · ◦ T3,2 ◦ T3,1(g),

SNN(l, r, g;W , b) = M ◦ T4,NS ◦ · · · ◦ T4,2 ◦ T4,1([R(r),L(l),G(g)];W , b).

(16)

As shown in (16), the hidden layers can be divided into four partitions Nl = NL + NR +
NG + NS . In each hidden layer, the nonlinear mapping Ti (x;W , b) : RMNi−1 → R

MNi has
the form as

Ti (x;W , b) = ReLU (W x + b) + x, (17)

where W is the weight matrix and b is the bias vector. Considering that the activation func-
tion is one of the most frequently implemented computations, we chose the ReLU function
ReLU(x) = (x + |x |)/2 because it is one of the least computationally complex activation
functions and is well adapted to regression problems, making it more suitable for large-scale
numerical computations.

In the output layer, the linear mapping M : RMNl ×n → R
n is define as

M(x, g;WM) = WMx + g. (18)

Compared with the conventional neural network model, this hidden layer combines a
residual connection that makes the network avoid the vanishing gradient and the network
degradation [24]. The mapping M is a short connection different from the residual connec-
tion, which can be construed as a transformation of the approximated vector into

(
I − A−1

)
g.

This makes the output vector have zero mean, which is more beneficial for the training of
networks with the ReLU activation function.

As mentioned in the introduction, we constructed the DNNmodel shown in (15) to derive
the predicted solution by network inference. Therefore, it is necessary to pre-solve a batch
of tridiagonal equations as the training set of the DNN model, which takes the form of

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 7 of 22 233

Pn =
{{

r i , l i , gi , yi
} : r i ∈ R

n−1; l i ∈ R
n−1; gi ∈ R

n; yi = C(r i , l i)
−1gi ; i ≤ Nt

}(
n ∈ N

+)
. (19)

The uniformity of the training set significantly affects the training effect; thus, we used
random matrixes with each element independent and identically distributed as the training
set to construct the training set in the model. Specifically, each element of r i , l i and gi is
Gaussian distributed, that

{
ri j , li j ∼ N

(
0, ρ2

v

)
(j < n),

gik ∼ N
(
0, ρ2

g

)
(k ≤ n),

(20)

where ρv and ρg are the standard deviation of the training set and treated as given parameters
in establishing the training set. Thus, the set Pn can be denoted by Pn

(
ρv, ρg

)
. To obtain

a DNN model with a broader range of applications, the actual training set we use Pn is
constructed from a set of random equations constructed with multiple sets of parameters, as

⎧⎪⎪⎨
⎪⎪⎩

Pn = ⋃
ρv∈V ,ρg∈G

Pn
(
ρv, ρg

)
,

V = {0.01, 0.05, 0.1, 0.5, 1, 2, 4},
G = {0.01, 0.05, 0.1, 0.5, 1, 2, 4}.

(21)

In the DNN model, the loss function is specified as.

L = 1
Nt

Nt∑
i=1

(
SNN

(
l i , r i , gi

) − yi
)2

, (22)

which is the commonly usedMean Squared Error (MSE) loss function in neural networks,
especially for regression tasks.

The structure diagram of the DNN model introduced above is shown in Fig. 1.
It can be observed that, the model has a few hyper-parameters, including the number of

the layers and neurons, and the training parameters. In Fig. 1, the number of layers in each
part of the network NL = NR = NG = NS = 3, i.e., the total number of hidden layers Nl is
12, which is the choice to balance accuracy and computational consumption. For i ≤ 3, the
number of the neurons in each hidden layer is Mi, j = 20n, while M4, j = 60n. The number
of neurons cannot be increased arbitrarily to balance the computational efficiency, and the
above values are an optimal option that we have obtained through practical tests.

Fig. 1 Schematic of the DNN model in DRIM

123

 233 Page 8 of 22 Z. Jiang et al.

2.3 The IterationMethod

In addition to predicting the solution of linear equations by neural networks, we adopt an
iterative algorithm to improve the numerical accuracy in DRIM, as shown in Algorithm 2.

Algorithm 2 Iterative correction method

The basic idea of the algorithm illustrated in Algorithm 2 is that, first, the DNN model
yields a predicted solution x̂0 based on the equation, and x̂0 will also be adopted as the initial
solution for the following iterations. In each iteration, the residual rk of the current solution is
fed into the DNNmodel instead of g, and then the DNNmodel outputs the correction c of the
current solution. This process is repeated until the convergence condition is reached. In this
algorithm, the convergence condition is that the norm of the residual ‖rk‖ stop decreasing
at a certain step, i.e., ‖rk‖ ≥ τ‖rk−1‖, where τ is a constant. (We preset that ‖r0‖ is a
sufficiently large number.)

In the correction algorithm, the amplification factor α is introduced to improve the accu-
racy of the algorithm. Inspired by the property that the exact mapping S must satisfy that
S(A, kg) = kS(A, g) for an arbitrary constant k, we applied this constant as an amplification
factor to DRIM. Specifically, we replace SNN(l, r, g) by SNN(l, r, αg)/α where the factor
α is greater than 1. The factor theoretically amplifies the input and is more conducive to the
prediction of the DNN model with the ReLU activation function.

We evaluated the influence of the factors ρg, ρv and α on the numerical accuracy of DRIM
with a series of numerical tests. The equations for the test are constructed in the samemethod
as the training set but are completely different matrices. In addition, we constructed multiple
test sets with different ρg and ρv for separate testing and collecting the mean errors ‖r‖2 for
comparison. ‖r‖2 is calculated by

‖r‖2 = 1
Nt

Nt∑
i=1

∥∥Ai x̂i − yi
∥∥, (23)

where (Ai , yi) is a single element of the test set and Nt is the number of test sets, Nt = 1000
in this test. Moreover, we quantified the effect of the amplification factor α based on the test,
and the numerical results are shown in Fig. 2.

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 9 of 22 233

Fig. 2 The mean error norms ‖r‖2 of DRIM for different ρg and ρv of the test set. (Left: ‖r‖ of the DNN
model; right: ‖r‖2 of DRIM)

Figure 2a demonstrates that ‖r‖2 is positively correlated with both ρg and ρv . For smaller
ρg, there is an approximate relationship that

‖r‖ 2 ≈ CLρ2
gρ

2
v , (24)

where CL is a constant independent of ρg and ρv . Although having the same polynomial
order in (24), ρg and ρv have essentially different effects on the numerical error: ρv affects
the diagonal dominance of the equation, i.e., the regularity of the equation; ρg has a linear
relationship with the solution of the equation, which directly determines the magnitude of
the solution. If ρv approaches or exceeds 0.5, the regularity of the equation is so poor that
the equation cannot be solved by the DNN model, and DRIM is consequently invalid.

Although ρv has a significant effect on the accuracy of the DNNmodel, Fig. 2b illustrates
that the corrected iteration method in DRIM almost eliminates its effect. This implies that
for an arbitrary equation, the error of DRIM will only be related to the magnitude of the
solution, i.e., DRIM has a constant relative accuracy.

The effect of the matrix structure (the size of the matrix and the relative position of non-
diagonal elements) on the accuracy of DRIM is evaluated as well. Numerical results indicate
that the approximate relation (23) remains valid for the equations with a similar structure,
thus we compared the constants CL for the four typical types of matrices at different sizes,
as shown in Fig. 3.

The four types of matrices involved in Fig. 4 represent a typical tridiagonal matrix (A),
a tridiagonal matrix with an asymmetric structure (B), a tridiagonal matrix with an interval
(C), and a five-diagonal matrix (D), respectively. In Fig. 3, the relative difference of constants
CL among different types of matrices does not exceed 15%, which demonstrates that DRIM
is effective for a variety of types of equations. The DNN model illustrated in Fig. 1 is
for tridiagonal equations, but it also has the potential to solve other equations of multiple
diagonal forms, and it does not restrict the position of non-diagonal vectors. Therefore, when
we adopt a difference scheme with higher-order precision or encounter more complicate
boundary conditions, we only need to modify the architecture of the input layers and the
training set of the DNN model.

123

 233 Page 10 of 22 Z. Jiang et al.

Fig. 3 The constant CL of the error for different sizes and structures of matrices

Fig. 4 The computational time of
different solving methods

3 Numerical Results and Validation

In this section, we examine the performance of DRIM by considering different numerical
examples. We focus on the computational efficiency and numerical accuracy of DRIM in
fluid simulation. Thus, we employed DRIM to solve well-known cases, e.g. Poiseuille flow,
backward-facing step flow, and driven cavity flow. For comparison, we present the compu-
tational times and numerical solutions of the classic algorithms and the experimental data in
the classic literature.

3.1 The Results of Computational Efficiency

The acceleration effect of DRIM on the linear equation solving process is our most important
result. To evaluate the computational efficiency of DRIM for equations of different sizes, we
construct random equations of sizes from 100 to 100,000. For each equation size, we solved
1000 equations separately with the classic algorithms and DRIM and calculated the total
computational time of the solving processes, shown in Fig. 4.

As a NN-based algorithm, the efficient implementation of DRIM must rely on GPU
devices, but most classic algorithms or libraries do not have natural GPU compatibility.

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 11 of 22 233

Table 1 Parameters of the test
platform Hardware parameters Software environment

CPU model Intel Xeon-W3175X Library Version

CPU cores 28 SciPy 1.5.2

CPU frequency 3.1 GHz TensorFlow 2.2.0

GPU model Nvidia RTX2080Ti CuPy 8.3.0

RAM 256 GB CUDA 10.2

To rigorously evaluate the efficiency advantages brought by DRIM, we choose the classic
algorithms on CPU and GPU at the same time (Table 1).

In this test, both the DRIM-based solver and classic solvers are implemented in Python
[25] and the DNN model is based on TensorFlow platform [26], while the classic algorithm
is provided by SciPy library [27] (for CPU implementation) and CuPy (for GPU imple-
mentation). Specifically, the classic algorithms in the test consist of BiCG [28], CGS [29],
GMRES [30], QMR [31, 32], and LSMR [33], which are iteration-based algorithms adapted
to large-scale computation [34]. Furthermore, to ensure that the classic algorithms served as
references can operate at optimal efficiency, the SciPy-based solvers in the test all employ
compressed sparse row (CSR) format for the storage and computation of the equations.

To make this test closer to the practical simulations, the computational time results in
Fig. 4 contain the time of both the solving process and the matrix assembly process. This
causes the algorithms operating on the GPU, including the CuPy-based LSQR algorithm and
DRIM, to be constrained by communication bottlenecks. The detailed test results is listed in
Table 2.

In the results, DRIM offers a 2–10 times speed-up relative to the most efficient classic
algorithm for solving equations of all sizes. Nonetheless, for larger equations (approaching
a size of 104), the computational time increases more rapidly due to the limitation of avail-
able GPU memory (as tested with only 11GB of GPU memory). Therefore, for large-scale
simulations, it is advisable to utilize GPUs with larger memory capacities or to implement
optimization strategies specifically for memory constraints.

In addition to the size of the matrix, the number of equations has a certain impact on the
calculation time. Different from the classic methods, DRIM, as a DNN-based method, is

Table 2 Computational time of different methods with different sizes of equations (unit: second)

Size of matrix Methods

DRIM CuPy-LSQR CGS LSQR LSMR GMRES BiCG QMR

102 0.069 2.935 0.382 1.366 0.636 0.343 0.349 0.848

2 × 102 0.074 4.079 0.443 1.571 0.696 0.394 0.414 0.975

5 × 102 0.100 7.683 0.497 1.929 0.768 0.446 0.465 1.067

103 0.124 13.778 0.562 2.130 0.834 0.501 0.522 1.159

2 × 103 0.184 25.323 0.702 2.552 0.959 0.652 0.652 1.344

5 × 103 0.343 60.555 1.597 4.502 2.010 1.882 1.597 3.605

104 0.920 119.849 2.681 7.435 2.911 3.033 2.594 6.153

123

 233 Page 12 of 22 Z. Jiang et al.

capable to input multiple equations at one time and solve them simultaneously. The character
is of positive significance to reduce CPU–GPU communication and improve GPU utilization
efficiency. This feature has positive implications for reducing CPU–GPU communication and
increasing the efficiency of GPU utilization. To demonstrate this advantage, we conducted a
comparison of matrices of different sizes, as shown in Table 3.

It can be observed from Table 3 that DRIM is not more efficient than other methods in
solving 1 or 10 equations. However, as the number of equations becomes larger, the time
consumption of the classic methods tends to grow linearly with the number of equations,
while the growth rate of DRIM is significantly lower. To further demonstrate this property,
we show the ratio of the solving time for multiple equations to that for a single equation in
Fig. 5.

In Fig. 5, the computational time of the classic algorithm on the CPU (LSQR in Fig. 5)
is approximately linear with respect to the number of equations. The same algorithm on the
GPU has a significant acceleration for the small matrices (100 × 100), but is also approx-
imately linear for larger matrices. This indicates that the algorithm on GPU is limited by
communication bottlenecks and explains why the CuPy-based algorithm in Fig. 4 does not
achieve the expected high efficiency. For all sizes of matrices in Fig. 5, the computational
time of DRIM increases more smoothly as the number of equations increases. This property
is derived from the transformation of matrices into vectors by neural networks and enables
DRIM well suited to be combined with the DST-based decomposition methods. It is worth
mentioning that in a 3D simulation, the number of sub-equations is the square of that in a 2D
simulation, thus DRIM will have a higher efficiency advantage for 3D problems.

3.2 The Poiseuille Flow

The Poiseuille flow is a well-known problemwith analytic solutions; therefore, it is a suitable
case for verifying the accuracy of DRIM. We construct a model of Poiseuille flow shown
in Fig. 6. The boundary conditions of the model are constant velocity u = (u, 0) at the
inlet, fully developed flow (∂xux = 0, uy = 0) at the outlet, and solid boundaries at the
other boundaries. The parameters of the geometry and the boundary conditions are listed in
Table 4.

In the analytical solution as well as in the numerical results, the velocity distribution at
the outlet boundary gradually stabilizes and finally shows the form of a quadratic function.
The simulation results of the fully developed flow are shown in Fig. 7a and b illustrates the
velocity distribution at the outlet boundary.

In Fig. 7b, in terms of the distribution of outlet velocity, the computational results of DRIM
coincide with the analytical solution, which proves that DRIM has good numerical accuracy
in this model. In the following sections, we will apply DRIM to some complex flow models
to further verify its reliability and numerical accuracy.

3.3 The Backwards-Facing Step Flow

Abackwards-facing stepflowcanbe regarded as having the simplest geometrywhile retaining
rich flowphysicsmanifested by flow separation, flow reattachment, andmultiple recirculating
bubbles in the channel depending on the Reynolds number and the geometrical parameters
such as the step height and the channel height. The geometric model and boundary conditions
of the backwards-facing flow are similar to those of the Poiseuille flow. However, part of the
inlet is the rigid boundary, as shown in Fig. 8.

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 13 of 22 233

Ta
bl
e
3
C
om

pu
ta
tio

na
lt
im

e
of

di
ff
er
en
tm

et
ho

ds
w
ith

di
ff
er
en
tn

um
be
rs
of

eq
ua
tio

ns
(u
ni
t:
se
co
nd

)

N
um

be
r
of

eq
ua
tio

ns
Si
ze

of
m
at
ri
x

10
0

×
10

0
10

00
×

10
00

10
,0
00

×
10

,0
00

D
R
IM

L
SQ

R
C
uP

y-
L
SQ

R
D
R
IM

L
SQ

R
C
uP

y-
L
SQ

R
D
R
IM

L
SQ

R
C
uP

y-
L
SQ

R

1
0.
03

74
0.
00

16
0.
02

26
0.
03

49
0.
00

25
0.
01

91
0.
03

48
0.
00

77
0.
15

79

10
0.
03

58
0.
01

49
0.
02

94
0.
03

76
0.
02

43
0.
17

75
0.
04

16
0.
07

95
1.
25

26

10
2

0.
04

60
0.
15

43
0.
34

21
0.
04

59
0.
23

75
1.
44

41
0.
10

28
0.
79

94
12

.0
41

10
3

0.
07

04
1.
39

49
2.
93

47
0.
12

61
2.
13

94
13

.7
71

0.
92

56
7.
48

88
12

0.
10

10
4

0.
39

86
13

.8
17

29
.0
62

1.
20

90
21

.4
13

13
6.
69

10
.1
71

75
.3
30

12
11

.2

123

 233 Page 14 of 22 Z. Jiang et al.

Fig. 5 Ratio of the computational time of multiple equations to the computational time of single equation

Fig. 6 The geometry and
boundary condition of the case of
Poiseuille flow

Table 4 The parameters settings
in the case of Poiseuille flow Parameter Value

Viscosity ν 0.01

Time step �t 0.01

Spatial step on x-axis �x 0.02

Spatial step on y-axis � y 0.02

Distance between walls L 1

Aspect ratio a 10

Inlet velocity u 1

(a) (b)

Fig. 7 The velocity distribution in the case of Poiseuille flow. a: x-axis velocity; b: the velocity comparison at
the outlet boundary

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 15 of 22 233

Fig. 8 The boundary condition of the case of backward-facing step flow

The parameter settings of the case of backward-facing step flow are similar to those of the
Poiseuille flow, where the spatial and time steps, the inlet velocity, and the viscosity are the
same. However, the backwards-facing step flow contains more complex flow phenomena and
a longer spatial scale is necessary to ensure its full development, thus we set the geometric
parameters as in Table 5

We selected several representative time steps from the simulation results to demonstrate the
flow development process, as shown in Fig. 9. We focus on whether the proposed algorithm
accurately calculates the structure of the vortices in the flow, and therefore, Fig. 9 presents
the distribution of vorticity at each time point.

In Fig. 9, the separation and reattachment of the flow can already be clearly observed,
and two main eddies (the lower wall eddy and upper wall eddy) are evident in the flow field.
Moreover, we further evaluated the numerical accuracy of DRIM by comparing the results
with those in the literature. Figure 10 illustrates three substantial characteristic lengths of the
backwards-facing step flow in the form of contour plots of the vorticity, including the length
of the lower eddy (x1) and the position of the flow separation (x2) and reattachment (x3). We

Table 5 The geometric
parameters in the case of
backward-facing step flow

Parameter Value

Distance between walls L 1

Aspect ratio α 30

Length of step q 0.5

t=20

t=40

t=80

t=120

Fig. 9 Numerical results of backwards-facing step flow with Re = 1000 (vorticity distribution)

123

 233 Page 16 of 22 Z. Jiang et al.

Fig. 10 Characteristic lengths in the case of backward-facing step flow

Table 6 Characteristic lengths in
the case of backward-facing step
flow

x1/L x2/L x3/L

DRIM 6.06 4.8 12.16

Ref. [35] 6.55 5.17 12.67

Ref. [36] 6.5605 5.237 12.441

compared these characteristic lengths in the simulation results with those in References [35]
and [36], as shown in Table 6.

In the comparison in Table 6, the computational results of DRIM agree well with those
of References in terms of the characteristic values, which further demonstrates the good
excellent numerical accuracy of DRIM in fluid simulation.

3.4 The Driven Cavity Flow

In addition to the above two cases, we utilized DRIM for the simulation of driven cavity flow,
a well-known benchmark problem. Compared with the previous two examples, the driven
cavity flow contains more flow properties and is more sensitive to the Reynolds number.
Therefore, we set up the models with Reynolds numbers of 1000 and 10,000 for numerical
validation.

The geometry and boundary conditions of the model are set as shown in Fig. 11. This
model has simple geometric parameters; thus, we set the Reynolds number by viscosity. We
set the time step �t = 0.01 and the spatial step �x = 0.025, and the total size of the grid is
400 × 400.

Figures 12 and 13 present the vorticity distribution at each stage of the driven cavity flow
with Reynolds numbers of 1000 and 10,000, respectively.

Because of the complexity of this model, we used two methods to verify the numerical
accuracy of the computational results. The first is the comparison of the velocity distribution
on the test line (shown in Fig. 11) with the reference [37], shown in Fig. 14.

In Fig. 14, the results for both Reynolds numbers are very close to those of reference [37].
In the driven cavity flow with a Reynolds number of 10,000, there are regions with sharp
velocity variations in both x and y directions, and DRIM has high accuracy in these regions
as well.

The second numerical verification is about the time evolution of the accuracy. We sepa-
rately applied DRIM and LGMRES to the simulation of the model with Reynolds numbers

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 17 of 22 233

Fig. 11 The boundary condition
of the case of driven cavity flow

Fig. 12 Numerical results of cavity flow with Re = 1000 (vorticity distribution)

of 1000 and 10,000, and the pressure development with time at the test point in the center of
the model (as shown in Fig. 11) is shown in Fig. 15.

In Fig. 15, the pressure difference at the test point is kept around 10–5, thus indicating
that DRIM has high numerical accuracy; moreover, the numerical error is stable and does
not accumulate to cause a divergence.

123

 233 Page 18 of 22 Z. Jiang et al.

Fig. 13 Numerical results of cavity flow with Re = 10,000 (vorticity distribution)

(a) Re=1000 (b) Re=10000

Fig. 14 The comparison of the velocity distribution on the test line

In addition to numerical accuracy, we are also concerned about the effect of DRIM on the
acceleration of time advance in fluid simulations. Figure 16 presents the average time of a
single time step of the LGMRES-based solver and DRIM-based solver when the size of the
grid is N × N.

123

A Neural Network-Based Poisson Solver for Fluid Simulation Page 19 of 22 233

Fig. 15 The error of the pressure at the test point

Fig. 16 The efficiency test for the
case of driven cavity flow

Due to the other non-optimized subroutines and the limited size of the problem, theDRIM-
accelerated SIMPLE algorithm is difficult to achieve the efficiency improvement shown in
Fig. 4, but DRIM still achieves a 2–4 times speed-up in the solving the PPE. Therefore,
it can be proved that DRIM is a promising and efficient algorithm for the simulation of
incompressible flow and other large-scale problems.

4 Conclusion

In this paper, we introduced DRIM, an innovative DNN-based method to solve PPE, which
accelerates the SIMPLE algorithm in the simulation of incompressible flow. DRIM com-
bines the advantages of DNN and correction iteration methods to yield high accuracy and
computational efficiency on a heterogeneous architecture platform.

(1) Based on the DNN algorithm, DRIM has high computation efficiency and native hard-
ware compatibility on GPU and other heterogeneous platforms. Compared with the
classic solving methods, DRIM can solve numerous linear equations with low compu-
tation complexity simultaneously.

(2) We utilized aDST-basedmethod to transform the original PPE intomultiple independent
sub-equations. These sub-equations are all tridiagonal equations. Therefore, we employ
a vector-set representation to enable them to be input into the DNN model.

123

 233 Page 20 of 22 Z. Jiang et al.

(3) To balance computational efficiency and accuracy, we construct a 12-layer DNN model
and train it with random equations. Res-Net architecture is combined in the model to
avoid the network degradation and vanishing gradient problem.

(4) To achieve acceptable precision, we employed the correction iteration to iteratively
reduce the error. The numerical results have proven that the iteration method almost
eliminates the influence of the diagonal dominance of the equation on the accuracy.

(5) We applied DRIM to the numerical simulations of the Poiseuille flow, the backwards-
facing step flow, and the driven cavity flow, respectively. The numerical results have
proven that the numerical precision of DRIM is comparable to that of classic solvers
and the DRIM-based algorithm is about 2–10 times faster than the conventional method.

Like the other algorithms based on NN, the performance of DRIM is also significantly
affected by the factors of input variables. We investigate some essential factors, e.g. the
diagonal dominance and the norm of the righthand-side vector and propose several ideas that
might optimize the performance of DRIM.

Acknowledgements This research was funded by the national key R&D program for international collabora-
tion, under grant 2020YFA0712502. The Natural Science Foundation of China (NSFC), grant 11972384, and
Guangdong Science and Technology Fund, grant 2021B1515310001, also supported this work.

Author contributions Zichao Jiang and Qinghe Yao wrote the main manuscript text. Zichao Jiang, Zhuolin
Wang and Junyang Jiang developed the solver proposed in this manuscript. Gengchao Yang and Zhang Yi
prepared the figures and revised the section 1 and 3 of the manuscript. All authors reviewed the manuscript.

Declarations

Conflict of interest The authors declare no conflict of interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the articleâŁ™s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the articleâŁ™s Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Issa RI, Gosman AD, Watkins AP (1986) The computation of compressible and incompressible recircu-
lating flows by a non-iterative implicit scheme. J Comput Phys 62(1):66–82

2. Xiao X, Zhou Y, Wang H, Yang X (2020) A novel CNN-based poisson solver for fluid simulation. IEEE
Trans Visual Comput Graphics 26(3):1454–1465

3. Costa P (2018) A FFT-based finite-difference solver for massively-parallel direct numerical simulations
of turbulent flows. Comput Math Appl 76(8):1853–1862

4. Alshemali B, Kalita J (2020) Improving the reliability of deep neural networks in NLP: a review. Knowl-
Based Syst 191:105210. https://doi.org/10.1016/j.knosys.2019.105210

5. ZhangXY, Zou JH, HeKM, Sun J (2016)Accelerating very deep convolutional networks for classification
and detection. IEEE Trans Pattern Anal Mach Intell 38(10):1943–1955

6. Han J, Nica M, Stinchcombe AR (2020) A derivative-free method for solving elliptic partial differential
equations with deep neural networks. J Comput Phys 419:109672

7. HornikK, StinchcombeM,WhiteH (1989)Multilayer feedforward networks are universal approximators.
Neural Netw 2(5):359–366. https://doi.org/10.1016/0893-6080(89)90020-8

123

https://doi.org/10.1016/j.knosys.2019.105210
https://doi.org/10.1016/0893-6080(89)90020-8

A Neural Network-Based Poisson Solver for Fluid Simulation Page 21 of 22 233

8. Kharazmi E, Zhang Z, Karniadakis GE (2021) hp-VPINNs: variational physics-informed neural networks
with domain decomposition. Comput Methods Appl Mech Eng 374:113547

9. Berg J,NystromK (2018)Aunified deep artificial neural network approach to partial differential equations
in complex geometries. Neurocomputing 317:28–41

10. Chaudhari P, Oberman A, Osher S, Soatto S, Carlier G (2017) Partial differential equations for training
deep neural networks. In 2017 Fifty-First Asilomar Conference on Signals, Systems, and Computers.
Conference Record of the Asilomar Conference on Signals Systems and Computers. pp 1627–1631

11. Weinan E, Han J, Jentzen A (2017) Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Commun Math
Stat 5(4):349–380. https://doi.org/10.1007/s40304-017-0117-6

12. Rudd K, Di Muro G, Ferrari S (2014) A constrained backpropagation approach for the adaptive solution
of partial differential equations. IEEE Trans Neural Netw Learn Syst 25(3):571–584

13. Sirignano J, Spiliopoulos K (2018) DGM: a deep learning algorithm for solving partial differential equa-
tions. J Comput Phys 375:1339–1364

14. Weinan E, Bing Yu (2018) The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Commun Math Stat 6(1):1–12. https://doi.org/10.1007/s40304-018-0127-z

15. RaissiM, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. JComput
Phys 378:686–707

16. Jagtap AD, Karniadakis GE (2020) Extended physics-informed neural networks (XPINNs): a general-
ized space-time domain decomposition based deep learning framework for nonlinear partial differential
equations. Commun Comput Phys 28(5):2002–2041

17. Papadopoulos L, Bakalakos S, Nikolopoulos S, Kalogeris I, Papadopoulos V (2023) A computational
framework for the indirect estimation of interface thermal resistance of composite materials using
XPINNs. Int J Heat Mass Transf 200:123420. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123420

18. Shukla K, Jagtap AD, Karniadakis GE (2021) Parallel physics-informed neural networks via domain
decomposition. J Comput Phys 447:110683. https://doi.org/10.1016/j.jcp.2021.110683

19. Ray D, Hesthaven JS (2018) An artificial neural network as a troubled-cell indicator. J Comput Phys
367:166–191. https://doi.org/10.1016/j.jcp.2018.04.029

20. Xie JB, He JC, Bao Y, Chen X (2021) A low-communication-overhead parallel DNS method for the 3D
incompressible wall turbulence. Int J Comput Fluid Dyn 35(6):413–432

21. Xue W, Wang Y, Chen Z, Liu H (2023) An integrated model with stable numerical methods for fractured
underground gas storage. J Clean Prod 393:136268

22. Xue W, Wang Y, Liang Y, Wang T, Ren B (2024) Efficient hydraulic and thermal simulation model of the
multi-phase natural gas production systemwith variable speed compressors. Appl ThermEng 242:122411

23. Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput C–23(1):90–93.
https://doi.org/10.1109/T-C.1974.223784

24. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv e-prints, p
arXiv:1512.03385

25. Van Rossum GD, Fred L (2009) Python 3 reference manual. CreateSpace
26. Abadi M et al. (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems
27. Pauli V et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods

17:261–272
28. Van Der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution

of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644
29. Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J Sci Stat

Comput 10(1):36–52
30. Saad Y, SchultzMH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM J Sci Stat Comput 7(3):856–869
31. Freund RW, Nachtigal NM (1991) QMR: a quasi-minimal residual method for non-Hermitian linear

systems. Numerische Mathematik 60(1):315–339. https://doi.org/10.1007/BF01385726
32. Freund RW, Nachtigal NM (1994) An implementation of the QMR method based on coupled two-term

recurrences. SIAM J Sci Comput 15(2):313–337
33. Fong DCL, Saunders M (2011) LSMR: an iterative algorithm for sparse least-squares problems. SIAM J

Sci Comput 33(5):2950–2971
34. Benzi M (2002) Preconditioning techniques for large linear systems: a survey. J Comput Phys

182(2):418–477
35. Erturk E (2008) Numerical solutions of 2-D steady incompressible flow over a backward-facing step, part

I: high Reynolds number solutions. Comput Fluids 37(6):633–655

123

https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123420
https://doi.org/10.1016/j.jcp.2021.110683
https://doi.org/10.1016/j.jcp.2018.04.029
https://doi.org/10.1109/T-C.1974.223784
http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/BF01385726

 233 Page 22 of 22 Z. Jiang et al.

36. Ramšak M, Škerget L (2004) A subdomain boundary element method for high-Reynolds laminar flow
using stream function-vorticity formulation. Int J Numer Methods Fluids 46(8):815–847. https://doi.org/
10.1002/fld.776

37. Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes
equations and a multigrid method. J Comput Phys 48(3):387–411

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1002/fld.776

	A Neural Network-Based Poisson Solver for Fluid Simulation
	Abstract
	1 Introduction
	2 Methodology
	2.1 The DST-Based Transformation of the Poisson Equation
	2.2 The DNN Model
	2.3 The Iteration Method

	3 Numerical Results and Validation
	3.1 The Results of Computational Efficiency
	3.2 The Poiseuille Flow
	3.3 The Backwards-Facing Step Flow
	3.4 The Driven Cavity Flow

	4 Conclusion
	Acknowledgements
	References

