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Abstract
This paper presents a novel method for smoothed particle hydrodynamics (SPH) with thin-walled rigid structures. Inspired by
the direct forcing immersed boundarymethod, thismethod employs amoving least squaremethod for the velocity interpolation
instead of the linear interpolation. It reduces oscillations due to changing relative positions between fluid grids and structures.
It also simplifies thin-walled rigid structure simulations by eliminating the need for multiple layers of boundary particles,
and improves computational accuracy and stability in three-dimensional scenarios. Results of the impulsively started plate
test demonstrate that the proposed method obtains smooth velocity and pressure, as well as a good match to the references
results of the vortex wake development. Results of the flow past cylinder test show that the proposed method avoids mutual
interference on both side of the boundary, while accurately calculating the forces acting on structure. By comparing to linear
least square direct forcing scheme and the diffusive direction scheme, advantages of lower oscillation and higher accuracy are
proven. Results of flow past a sphere further indicate the stability of the proposed method for three-dimensional simulations.

Keywords Smooth particle hydrodynamics · Moving least square method · Immersed boundary method · Thin-walled
structures

Mathematics Subject Classification 76M28 · 76D25

1 Introduction

Over the past decades, meshless methods have undergone
remarkable advancements [1–3]. The availability of vari-
ous high-performance algorithms [4, 5] has facilitated their
widespread applications by alleviating concerns regarding
computational complexity. Among these methods, smoothed
particle hydrodynamics (SPH) [6], due to its natural adapt-
ability to large-deformations and moving boundaries, shows
a good potential in free-surface flows, multi-phase flows [7,
8], fluid–structure interaction (FSI) problems [9–13], etc.
Techniques like particle shifting [14–16] and various dif-
fusion methods [17, 18] have been employed to reduce the
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instability of SPH caused by irregular particle distribution. In
2017, Sun et al. proposed the δ+-SPH [19] method. It com-
bines the shifting method with δ-SPH [20, 21] and achieves
excellent results in reducing the tensile instability and the
pressure oscillation, which is a solid foundation of the cur-
rent study.

The treatment of fluid–structure boundaries stands as a
pivotal aspect in SPH. Due to the reliance of various com-
putations on the kernel approximation [22], the treatment
of fluid–structure boundaries differs from that in grid-based
methods. Since the kernel approximation in the SPHmethod
is derived under the assumption of a complete integral
domain, the treatment of fluid–structure boundaries typically
requires maintaining the integrity of the domain. A classic
approach is putting some particles at the structure surface
to fill the integral domain. For example, in 1997, Morris
et al. simulated the solid wall by placing a series of fixed
particles along the solid wall and computed the velocity of
those particles according to the tangent plane and the distance
to the boundary surface [23]. In 2003, by directly replicat-
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ing a series of mirrored particles along the structure surface,
Colagrossi et al. successfully simulated both slip and no-slip
boundaries [24]. Commonly used extensions of this approach
are proposed by Adami et al. [25] and Marrone et al. [20];
Adami et al. use the renormalized kernel approximation to
compute velocity and pressure of the boundary particles, and
Marrone et al. calculate velocity and pressure of the bound-
ary particles by doing a kernel approximation at the mirrored
position at the boundary surface.

Another approach is using the non-vanishing surface inte-
gral for the incomplete integral domain while deriving the
kernel approximation. This approach does not need extra
particles to fill the integral domain. Thus it is easier to
model complex geometries. In 2012, Marrone et al. success-
fully applied this approach to ship wave breaking patterns
[26]. In 2019, Chiron et al. further developed this approach
by introducing a Laplacian operator and a cutface process
for calculating the particle/wall interactions on any type of
geometry [27].

For simulating problems with structures immersed in
fluid, another commonly used technique is the immersed
boundarymethod (IBM) [28].Comparedwith the approaches
introduced in previous paragraphs, the IBM requests neither
multiple layers of boundary particles nor the calculation of
the surface integral. Thus it can more easily incorporate thin-
walled structures immersed in fluid.

In the IBM, a structure is represented by a series of
Lagrange particles. These particles interact with the flow
field by imposing boundary force to grid nodes nearby. There
are different ways proposed to calculate this boundary force.
The approach proposed by Peskin [29] is to calculate it
according to the deformation of the flexible structure. A sec-
ond approach is the feed-back forcing scheme [30], which
introduces a feed-back mechanism based on the desired
velocity and the actual velocity near the structure to compute
the boundary force. Another approach is the direct forcing
scheme [31, 32]. It calculate the force by finding the dif-
ference between preliminary velocity and desired velocity,
enforcing the velocity of fluid at the structure surface to be
equal to the structure velocity at the end of a time step. In
Uhlmann’s work [33], a cylinder in uniform cross-flow is
simulated using the direct forcing scheme. The results show
strong oscillations on the scale of the mesh-width. These
oscillations occur when the relative position of the structure
and fluid grids changes, indicating that the linear interpola-
tionused in this scheme is not smooth enough.Amodification
of this scheme is the diffusive direct forcing IBM, which
has successfully reduced the oscillation when simulating the
same case. In this scheme, the boundary force is calculated
on the structure particles and then is spread to fluid grid nodes
using a Dirac delta function.

Some works have applied the IBMmethod in SPH. Hiber
et al. [34] combined the remeshingSPHwith the IBMfor sim-

ulations offlowspast complexdeforminggeometries in 2008.
In thework ofKalateh et al., the IBMwas used to couple SPH
with finite element method [35]. In 2019, it was also used to
couple SPH with the discrete element method by Nasar et al.
[36]. These works introduce the widely used boundary force
calculation approach in SPH; the boundary force is first cal-
culated on the structure particles, and when spreading the
force to fluid particles, the kernel function is then used as
the Dirac delta function. The diffusive direct forcing scheme
used in SPH by Nasar et al. [37] is one of the examples.
In their opinion, when spreading the force to fluid particles,
the structure particles which consist of only one layer of
points cannot fulfill the assumption that the integral domain
is complete. This can lead to non-conservation ofmomentum
and the low accuracy results. To avoid this, Nasar et al. [37]
and Cherfils [38] introduced the moving least square (MLS)
method to update the integral kernel when applying the dif-
fusive direct forcing IBM in SPH. As will be explained in
this paper, the use of the MLS method is equivalent to doing
an extrapolation for the force on the structure surface. These
works are for 2D problems. And when it comes to 3D prob-
lems, the extrapolation on a single layer of points may not be
accurate and the coefficient matrix which must be inverted
may become singular. This may lead to unstable problems.
For more examples of using the IBM in SPH, we refer to, for
instance, [39–41].

In this work, instead of the diffusive direct forcing
approach, a direct forcing scheme is coupled with the MLS
method for the velocity interpolation in δ+-SPH. This choice
enables us to achieve smoother results and to alleviate oscil-
lations. In addition, it keeps stable in 3D simulations while
calculating the forces acting on structure more accurately.

The organization of this paper is as follows: In Sect. 2, a
brief introduction to δ+-SPH is present. In Sect. 3, the MLS
diffusive direct forcing method and the proposed method
are explained. Supportive numerical results follow in Sect. 4.
Finally conclusions are drawn in Sect. 5.

2 ı+-SPH

TheNaiver-Stokes equations for weakly compressible media
can be written as

⎧
⎪⎪⎨

⎪⎪⎩

du
dt

= − 1

ρ
∇ p + μ

ρ
∇2u + f

ρ

dρ

dt
= −ρ∇ · u

, (1)

which, together with the equation of the state, govern the
dynamics of velocity u, density ρ and static pressure p sub-
ject to external body force f , material parameter dynamic
fluid viscosity μ, and initial and boundary conditions.
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The discrete form of (1) in δ+-SPH [19] is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dui
dt

= 1

ρi

∑

j

Fi j∇i Wi j Vj + K
μ

ρi

∑

j

πi j∇i Wi j Vj + f i
ρi

dρi
dt

= −ρi
∑

j

(
u j − ui

) · ∇i Wi j Vj + δhc0
∑

j

Di j · ∇i Wi j Vj

,

(2)

where subscript i represents the index of the particle, and
the indices of its neighboring particles within the supporting
domain are denoted by subscript j . V = m/ρ is the volume
of particle. h = 1.3Δx is the smooth length. Δx is the initial
particle spacing. Wi j is the quintic spline kernel function,

Wi j = W (
∣
∣r i j
∣
∣ , h) = W0 ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3 − q)5 − 6 (2 − q)5 + 15 (1 − q)5 , 0 ≤q < 1

(3 − q)5 − 6 (2 − q)5 , 1 ≤q < 2

(3 − q)5 , 2 ≤q < 3

0, 3 ≤q

,

where r i j = r i − r j with r being the position of the particle,
q = ∣∣r i j

∣
∣ /h, and W0 = 3/(359πh3) for 3D problem.

At the right hand side of the discrete momentum equation,
i.e., the first equation in (2), the first term is the pressure
gradient term using the TIC technique [42], where

Fi j = − (pi + p j
)+ ki ,

ki =
{
0, pi ≥ 0 or i ∈ D f

2pi , pi < 0 and i /∈ D f
.

And D f is the particle set containing free-surface and its
neighboring particles. The second term is the viscous term
and K = 2(n + 2) where n is the number of spacial dimen-
sions of the problem. πi j is the viscus interaction between
particle i and particle j ,

πi j =
(
u j − ui

) · (r j − r j
)

∣
∣r j − r j

∣
∣2

.

In the discrete continuity equation, i.e., the second equation
in (2), the second term at the right hand side is the artificial
diffusion term [20] where δ = 0.1, and

Di j = 2

[
(
ρ j − ρi

)− 1

2

(
〈∇ρ〉Li + 〈∇ρ〉Lj

)
· r i j

]
r i j
r2i j

.

And 〈∇ρ〉L denotes the renormalized spatial gradient of ρ,
[18].

The pressure is straightforwardly linked to the density by
the equation of state,

p = c20ρ0
γ

((
ρ

ρ0

)γ

− 1

)

,

where ρ0 is the initial density of fluid, c0 is the numerical
sound speed, γ is usually set to be 7. To enforce the weakly
compressible regime, c0 is usually set to be larger than ten
times of themaximum velocity in the computational domain.

To obtain a uniform particle distribution, the particle-
shifting technique [19] is also used. Positions of particles
will be corrected at the end of each time step by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r∗
i = r i + δr i

δr i = −CCFL · Ma · (2hi )
2 ·
∑

i

[

1 + R

(
Wi j

W (Δx)

)n′]

∇iWi j
m j

ρi + ρ j

,

where r∗ is the corrected particle position, CCFL = 1.5,
R = 0.2, n′ = 4 and Ma = U0/c0. U0 is the reference
velocity; in this work, it is set to be the inflow velocity or the
structure velocity.

3 Immersed boundary method for SPH

The IBM characters immersed structure boundaries by struc-
tural particles. We will see that these immersed structure
particles, as illustrate in Fig. 1, play distinct roles compared
to fluid particles.

Throughout this section, physical quantities associated
with structural particles are denoted by uppercase symbols,
e.g., U, R, F, while those associated with fluid particles are
denoted by lowercase symbols, e.g., u, r, f .

3.1 MLS diffusive direct forcing IBM

In the diffusive direct forcing scheme [33], the interaction
between the structure boundaries and the fluid is computed
through themotion of structure particles. At each time step sn
from time instant tn to time instant tn+1, n ∈ {0, 1, 2, . . .}, the
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Fig. 1 Immersed structure in fluid domain

computation is divided into following three steps. Suppose
the solution at time instant tn is known.
Step 1Velocity, position, and density of each fluid particle at
time instant tn+ 1

2
are calculated by

u
n+ 1

2
i = uni + duni

dt

Δt

2
,

r
n+ 1

2
i = rni + u

n+ 1
2

i
Δt

2
,

ρ
n+ 1

2
i = ρn

i + dρn
i

dt

Δt

2
,

(3)

whereΔt is the time interval, i.e.,Δt = tn+1−tn . The desired
velocity and position of the structure particle at time instant
tn+1 are calculated,

Ud
b = Un

b + RHS
n+ 1

2
b Δt,

Rd
b = Rn

b + Un
bΔt,

(4)

where RHSb represents the acceleration of structure particle
indexed b which is typically given by the problem setup.
Equation (4) provides the calculation method for moving
structures, and in this study, we only consider the case of
uniform-speed structures, i.e., RHSb = 0.
Step 2 The preliminary velocity field at time instant tn+1 is
evaluated by

u∗
i = uni + du

n+ 1
2

i

dt
Δt . (5)

Using the kernel integration, the preliminary velocity at the
position of structure particle b is

U∗
b =

N f∑

j

u∗
jWbj Vj ,

where N f is the total number of fluid particles within the
supporting dimain.

For no-slip boundaries, the velocity of fluid particle at the
position of structure particle is equal to that of the structure
particle. This means the boundary force at the position of
structure particle indexed b must force the fluid velocity at
time instant tn+1 to be Ud

b . Therefore, the force can be com-
puted,

F
n+ 1

2
b = ρ0

Ud
b − U∗

b

Δt
.

In the diffusive direct forcing scheme, the forces on fluid
particles near the structure are obtained based on the kernel
interpolation, i.e.,

f
n+ 1

2
i =

Nb∑

b

F
n+ 1

2
b WibVb, (6)

where Nb and Vb are the total number of structure particles
within supporting domain and the volume of the structure
particle indexed b, respectively. Equation (6) can be inter-
preted as the propagation of structure–fluid interation. It can
be proven that momentum conservation is equivalent to the
normalization condition of kernel function [37],

Nb∑

b

WibVb = 1. (7)

Using the IBM, the structure boundary only consist of one
layer of structure particles, thus (7) cannot be fully satisfied.
To address this limitation, Nasar et al. correct the shape of the
kernel function based on MLS method. The 2D MLS kernel
function is defined as

WMLS
ib = (βi · (1, xib, yib))Wib, (8)

where xib = xi − xb, yib = yi − yb, βi = A−1
i [1 0 0]T

and

Ai =
N∑

j=1

⎡

⎣
1 xib yib
xib x2ib xib yib
yib xib yib y2ib

⎤

⎦WibVb.

An introduction of theMLSmethod is presented inAppendix
A, including the kernel function in 3D.
Step 3 Based on the external force term computed in (6), the
expression for the physical quantities at time instant tn+1 is

un+1
i = uni + du

n+ 1
2

i

dt
Δt + f

n+ 1
2

i

ρi
Δt,

rn+1
i = rni + u

n+ 1
2

i Δt,

ρn+1
i = ρn

i + dρ
n+ 1

2
i

dt
Δt .

(9)
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Fig. 2 Schematic of two
interpolation schemes

(a) Diffusive direct forcing scheme (b) Direct forcing scheme

The position and velocity of structure particles are updated
by

Rn+1
i = Rd

i ,

Un+1
i = Ud

i .
(10)

3.2 MLS direct forcing IBM

One of the fundamental limitations in the MLS diffusive
direct forcing scheme is the potential instability in 3D sim-
ulations. This instability arises from an insufficient number
of interpolation points and results in singular matrices A. To
address this issue, we employ the direct forcing scheme for
the force computation. Different from (6), the force calcula-
tion in the proposed method is defined as

f
n+ 1

2
i = ρ0

udi − u∗
i

Δt
, (11)

where ud is the desired velocity of the fluid at time instant
tn+1. In the direct forcing scheme, the desired velocity of
particles far from the boundary, comes from the solution of
momentum equation (1) without infulence from the bound-
ary; while that of the position at structure particles equals to
the structure velocity. The desired velocity of fluid near the
structure is determine by a interpolation from that two kinds
of particles. In the direct forcing method, this process is usu-
ally done using a linear interpolation. However, the accuracy
of linear interpolation can be easily affected by positions of
the interpolation points. When the structure moves, the rel-
ative positions of the interpolation points change, causing
mesh-scale oscillations. More discussions can be found in
[33, 43]. As for meshless methods (e.g., the SPH method),
the relative positions of fluid and structure particles change
over time and it becomes more formidable and oscillations

can occur even with a static rigid body. As an interpolation
method, the MLS shows a superior smoothness in handling
data with irregular distributions. In this works, it is used to
determine the desired velocity near the srtucture.

As shown in Fig. 2b, particles located within a distance
d from the structure surface are labeled as interface fluid
particles, while all other particles are labeled as inner fluid
particles. ud and f are calculated only on the interface fluid
particles. ud of the interface fluid particle indexed i is calcu-
lated as:

udi =
Nin∑

j

u∗
jW

MLS
i j +

Nb∑

j

Ud
j W

MLS
i j , (12)

where Nin and Nb are the numbers of the inner fluid particles
and structure particles within the supporting domain. The
distance d is between Δx and 2Δx . In Sects. 4.1 and 4.2,
d = 2Δx . In Sect. 4.3, d = Δx . This can reduce the influence
from the velocity at other side of the structure as well as can
maintain a smooth interpolation. In 3D problems, WMLS

i j is

WMLS
i j = [1 0 0 0

]
A−1
i

⎡

⎢
⎢
⎣

1
xi j
yi j
zi j

⎤

⎥
⎥
⎦W (

∣
∣r i j
∣
∣ , hib), (13)

where
[
xi j yi j zi j

]T = [
xi − x j yi − y j zi − z j

]T
is the

distance between particles indexed i and j , hib is the smooth
length for the immersed boundary. Depending on bound-
ary distance d, hib = 1.3Δx in Sects. 4.1 and 4.2 and
h = 0.65Δx in Sect. 4.3. A is evaluated based on the position
of interface particle and structure surface point,
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Ai =
Nin+Nb∑

j

⎡

⎢
⎢
⎢
⎣

1 xi j yi j zi j
xi j x2i j xi j yi j xi j zi j
yi j yi j xi j y2i j yi j zi j
zi j zi j xi j zi j yi j z2i j

⎤

⎥
⎥
⎥
⎦
W (
∣
∣r i j
∣
∣ , hib).

In summary, the computational process of the proposed
method explained in this section is illustrated as follows:

Algorithm 1: Time advancing step
Input: The velocit un ,Un , position rn ,Rn and fluid density ρn at

time step n
Output: The velocity un+1,Un+1, position rn+1,Rn+1 and fluid

density ρn at time step n + 1
1 Searching the neighbor particles within supporting domain;

2 Calculate
dun

dt
,
dρn

dt
based on (2);

3 Calculate un+1/2, rn+1/2 and ρn+1/2 based on (3);
4 Calculate the desired velocity Ud and the desired position Rd

based on (4);
5 Update the neighbor particles list;

6 Calculate
dun+1/2

dt
,
dρn+1/2

dt
based on (2);

7 Predict the preliminart velocity u∗ at time n + 1 based on (5);
8 Determine the interface particles and inner particles as Fig. 2;
9 Interpolate the desired velocity on fluid particle ud based on (12);

10 Calculate the force f n+1/2 based on (11);
11 Correct the velocity un+1, position rn+1 and density ρn+1 of

fluid particles based on (9);
12 Update the velocity Un+1 and position Rn+1 of strcture particles

based on (10)

4 Numerical tests

In this section, several numerical tests are presented to illus-
trate the performance of the proposed method. The first
one is the impulsively started plate test at Reynolds num-
ber Re = 126, and the other two simulate the flow past a
infinite cylinder pipe at different Reynolds number and the
flow past a sphere at Re = 300, respectively.

4.1 Impulsively started plate test

The impulsively started plate test is a classic fluid dynamics
experiment used to study the response of fluid to a sud-
den application of an external force. In numerical studies,
it is usually simplified to a one-way coupled problem. The
immersed thin plate is impulsively started andmoves through
the fluid at a constant velocity. After the impulsive start, the
fluid shows an inertial response, and vortices are formed on
the surface of the plate. It is worthy to evaluate the stability
and accuracy of the proposed IBM scheme through this test
case.

The configuration of this test is shown in Fig. 3. The black
plate extends infinitely along the z-direction with a width of

L = 0.3m. The fluid is static initially. A constant velocity
Up = 0.1m/s along the direction indicated by the arrow is
applied to this plate. The plate is represented by a series IBM
particles. The simulation is conducted at

Re = LUpρ

μ
= 126.

The size of the computational domain along the x-direction
and y-direction is 6.66L and 3 L , respectively.And the height
of the domain is 5Δx . The domain is periodic in all directions.
In this study, we use Δx = L/120, Δt = 3.5 × 10−5s and
c0 = 15m/s. This configuration is same to that of [37]. We
will use u to denote the velocity of the flow relative to the
plate. And non-dimensional time

t∗ = tUp/L

is also utilized.
At the first stage of the simulation, there exists a veloc-

ity discontinuity of the plate and the fluid. It can lead to
instability in the numerical results. Thus the smoothness
in the interpolation process is required. Figure4 illustrates
the pressure and velocity fields near the plate edge at t∗ =
0.0058333. As shown in Fig. 4a, the impulsive start of the
plate induces a significant pressure difference between the
two sides of the plate. And as y increases, the pressure gradu-
ally diffuses, showing a smooth transition. Figure4b presents
the distribution of the vector norm of the velocity relative to
the plate, i.e., ‖u‖ := √

u · u. It is close to zero near the plate
surface. And it reaches approximately 0.1m/s far away from
the plate. Near the plate edge, there is a high velocity region
of vector norm around 0.2m/s. The transition between these
velocity regions is smooth. Thus, in this case, theMLS veloc-
ity interpolation method used in our study achieves smooth
interpolation of the velocity field, ensuring computational
stability.

Figure 5 shows the development of the vortex bubbles
induced by the suddenly moving plate and the velocity vec-
tor at time t∗ = 0.35, 0.7, 1.05 and 1.4. The velocity vector is
presented on a grid of intervalΔxgrid = 10Δx . It is seen that
vortices appear at both edges of the plate andmove away from
the plate edges. Their shapes develop from circles to ellipses
and the vorticity gradually decrease. These vortices exert an
influence extending from the plate to a distance behind it.
Within this span, there is a reversal in fluid velocity, tran-
sitioning from the initial flow direction to its opposite. As
the distance progresses, the fluid gradually returns to its nor-
mal flow direction. The stagnation point where the velocity
starts to reverse is commonly used to measure the length
of the wake vortices. Figure6 shows results of the distance
between the stagnation point and the plate. A good match to
the references taken from [37, 44–46], is observed.
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Fig. 3 Computation domain for
a 3-D thin rigid impulsively
started plate

Fig. 4 Pressure and velocity
near the plate edge at
t∗ = 0.0058333

Fig. 5 Vorticity ωz and velocity
vector at
t∗ = 0.35, 0.7, 1.05, 1.4
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Fig. 6 History of the wake length for impulsively started plate at Re =
126

4.2 Flow past an infinitely long cylinder pipe

The configuration of this test case is illustrated in Fig. 7.
The model consists of an infinitely long cylindrical pipe
with a diameter of D = 0.1m. The size of the computation
domain in x and y-directions are 15D and 8D respectively.
The domain is periodic in z-direction. The x−-face is the
fluid inlet implemented using the mirror method, and the
x+-face is the fluid outlet implemented with the do-nothing
method. Same configurations for inlet and outlet conditions
can be found in Pawan’s work [47]. To prevent the instability
induced by repulsively starting, the velocity field starts with a
resting state, and gradually increases during t ∈ [0, D/Uin],
where Uin = 1m/s is the final velocity of inflow; a constant
acceleration a0 = U 2

in/D is applied during this period.
Note that, in this case, only the cylinder surface is mod-

eled using the IBM. The wall boundaries on both sides of
y-direction are modeled using 4 layers of dummy particles.
The pressure of these dummy particles is calculated accord-
ing to the following normalized interpolation,

pi =
∑N

j piWi jVj

Wi jVj
.

The velocity of dummy particles are zero. To reduce the
influence to the fluid field, these particles do not partici-
pate the calculation of the viscus term in (2). In this case,
Δx = D/30, Δt = 1 × 10−4, which leads to stable results,
see Thanh’s work [48]. The numerical speed of sound is set

to c0 = 20m/s. Reynolds number is calculated by

Re = ρUinD/μ.

And we use dimensionless time

t∗ = tUin/D.

Figure 8 shows results of the z-component of the dimen-
sionless vorticity

ω∗
z = ωz D/Uin,

for Re = 20 at t∗ = 92 and Re = 200 at instances of drag
coefficient peak (from top to bottom, t∗ = 93.8, 92.9, 92.0).
Results of the diffusive direct forcing method (hereafter
referred to as DDF) and the direct forcing method with lin-
ear least square interpolation are also presented. (The DDF
method is the non-MLS version of the approach discussed in
Sect. 3.1. For the MLS DDF, the MLS matrix A of some par-
ticles becomes singular in this case, which leads to a quick
divergence.) At Re = 20, results of all methods show stable
wake patterns. Similarly, atRe = 200, allmethods showperi-
odic vortex shedding. Inside the cylinder, the DDF method
shows a nonzero vorticity field. This is because when spread-
ing the force from structure particles to fluid particles, the
force act on both sides. On the contrary, the other results
which are based on the direct forcing scheme remain a zero
vorticity field within the cylinder.

To further indicate the advantage of using themoving least
square interpolation, the dimensionless pressure field p∗ =
p/(ρU 2

in) near the cylinder at Re = 200 is presented in Fig. 9,
where both the DDFmethod and the proposedmethod obtain
smooth pressure fields. Similar to the direct forcing method
with liner interpolation, the results with linear least square
interpolation show apparent pressure oscillations near the
immersed boundary.

Figures 10 and 11 present results of drag and lift coeffi-
cients,

CD = 2Ftotal,x
ρU2

inD
, CL = 2Ftotal,y

ρU2
inD

, (14)

where Ftotal,x and Ftotal,y are the x and y components of
the total force per unit length, i.e., Ftotal, on the cylinder

Fig. 7 Computation domain for
3-D flow past a infinitely long
cylinder
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(a) Diffusive direct forcing method

(b) Direct forcing method with linear least square interpolation

(c) Proposed method

Fig. 8 Dimensionless vorticityω∗
z = ωz D/Uin. Left:Re = 20 at t∗ = 92. Right:Re = 200 at instances of drag coefficient peak (from top to bottom,

t∗ = 93.8, 92.9, 92.0)

surface. The total force is evaluated using a surface integral
of the stress tensor over the cylinder,

Ftotal =
∫

Ω

(
−pn + μ

(
∇ · u + (∇ · u)T

)
· n
)
dS, (15)

where Ω is the surface area per unit length of the cylinder,
and n is the unit outward normal vector.

Figure 10 presents the results of drag and lift coefficients
at Re = 20. Owing to the low Reynolds number, the flow
is symmetric along the x axis, and all methods show stable
lift coefficients near zero. Regarding the drag coefficient, as
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Fig. 9 Dimensionless pressure
P∗ = P/ρU2

in at Re = 200 near
the cylinder. Left: t∗ = 2. Right:
t∗ = 20

(a) Diffusive direct forcing method

(b) Direct forcing method with linear least square interpolation

(c) Proposed method

previously mentioned, the DDF method, due to the unsat-
isfaction of (7) in the force spreading process, results in a
smaller drag coefficient. The drag coefficient of the direct
forcing method with linear least square interpolation is little
larger than the reference and the absolute error is smaller than
the DDF method. Conversely, the proposed method closely
aligns with the results of Tafuni et al [49]. Figure11 shows
the drag and lift coefficients at Re = 200. Similar to the

results at Re = 20, the proposed method produces a drag
coefficient that is close to the results of Thanh et al. [48].
The drag coefficient of the direct forcing method with linear
least square interpolation is a little lower than the reference
while the DDF method yields a lowest drag coefficient. As
for the lift coefficient, all results experience a minor dispar-
ity, with all being slightly lower than the results reported by
Thanh et al. And their periodic behaviors remain similar.
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Fig. 10 History of the drag and
lift coefficients for flow past a
circular cylinder at Re = 20

Fig. 11 History of the drag and
lift coefficients for flow past a
circular cylinder at Re = 200

Fig. 12 Computation domain for flow past a sphere

4.3 Flow past a sphere

Figure 12 illustrates the computational domain of the flow
past a sphere test. The boundaries perpendicular to y-
direction and z-direction are wall boundaries modeled by
4 layers of dummy particles, same as those in Sect. 4.2. The
inflow and outflow boundaries are configured also same to
those Sect. 4.2. In this case,Δx = D/20,Δt = 0.5×10−4s,
the diameter of the sphere D = 0.1m and the inflow velocity
Uin = 1m/s. To prevent the instability induced by repul-
sively starting, the same acceleration as that in Sect. 4.2
during t ∈ [0, D/Uin] is applied. Besides, in order to speed
up the occurrence of the wake shedding, we add a small per-
turbation

vy = 0.5sin((x − 4.5)π/0.1)sin

((y − 7.5)π/0.1)sin((z − 7.5)π/0.1)

on y velocity at t∗ = 10 in x ∈ (0.45, 0.55), y ∈
(0.75, 0.85), z ∈ (0.75, 0.85), where t∗ = tUin/D.

The drag coefficient is calculated according to (14). Fig-
ure13 displays the history of the drag coefficient at Re =
ρUinD/μ = 300 with dimensionless time t∗. The results of
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Fig. 13 History of the drag coefficient for flow past a sphere at Re =
300

Fig. 14 Side view of vortex structure at Re = 300 identified with λ2-
criterion

the proposed method are in good agreement with the works
of Kim et al. [50] and Crivellini et al. [51]. Figures14 and 15
show the vortex structure at t∗ = 23.5, with comparisons to
Crivellini’s results. Clearly, our results show a similar vortex
wake shedding pattern to their works.

5 Conclusion

This paper presents a novel moving lesat square immersed
boundary method for smoothed particle hydrodynamics
(SPH) with thin-walled structures.

By adopting the moving least square method for veloc-
ity interpolation, the method is stable for three-dimensional
problems. Compared with traditional fixed particle wall
boundary conditions, the immersed boundary method
approach requires only a single layer of boundary particles,
making it particularly well-suited for thin-walled structures
immersed in fluid. The proposed approach is based on the
direct forcing scheme, utilizing the moving lesat square
method to obtain a smooth velocity field. Compared to linear

Fig. 15 Bottom view of vortex structure at Re = 300 identified with
λ2-criterion

least square interpolation, the moving least square method
ensures the stability, resulting in the reduction of pressure
oscillations. It also provides more accurate drag and lift coef-
ficients. Furthermore, unlike methods based on the diffusive
direct forcing approach, the proposed method avoids mutual
interference on both sides of the thin-walled structure, result-
ing in a more accurate calculation of the force acting on
the structure surface. Using interpolation instead of exter-
nal extrapolation used in the moving least square diffusive
direct forcingmethod, our approach avoids instability caused
by insufficient support domain particles, making it stable for
three-dimensional problems.

Appendix A: Details of the moving least
square interpolation

Consider a set of data points in a scalar field φ. The linear
interpolation value can be given by:

φ̃ j = c1xi j + c2yi j + c3zi j + c4, (16)

where subscript j represents point index, c1, c2, c3 are unde-
termined coefficient, xi j = xi − x j , yi j = yi − y j , zi j =
zi − z j are the distance between point j and center point i .

The weighted sum of squared differences between inter-
polation value and real value is:

J =
N∑

j

W 0
i j (φ̃ j − φ j )

2,
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where N is the number of data points. W 0
i j is the weight,

in Nasar’s work W 0
i j = Wi j Vj , in our work W 0

i j = Wi j .
Actually, as the volume fluctuations remain lower than 1%,
the two weights have similar effects. To minimize the error,
we differentiate J with respect to each coefficient c j and set
the derivatives to zero:

∂ J

∂c
= 0,

where c = [c1 c2 c3 c4
]T
.

Solving these equations gives us the system of equations
in matrix form as:

N∑

i

W 0
i j

⎡

⎢
⎢
⎢
⎣

1 xi j yi j zi j
xi j x2i j xi j yi j xi j zi j
yi j yi j xi j y2i j yi j zi j
zi j zi j xi j zi j yi j z2i j

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

c1
c2
c3
c4

⎤

⎥
⎥
⎦

=
N∑

j

W 0
i jφ j

⎡

⎢
⎢
⎣

1
xi j
yi j
zi j

⎤

⎥
⎥
⎦ .

Solving this system of equations gives us the coefficients
c1, c2, c3, c4 of the polynomial that best fits the data.Defining
the matrix A:

Ai =
N∑

j

⎡

⎢
⎢
⎢
⎣

1 xi j yi j zi j
xi j x2i j xi j yi j xi j zi j
yi j yi j xi j y2i j yi j zi j
zi j zi j xi j zi j yi j z2i j

⎤

⎥
⎥
⎥
⎦
W 0

i j ,

then c can be represented as:

⎡

⎢
⎢
⎣

c1
c2
c3
c4

⎤

⎥
⎥
⎦ = A−1

i

N∑

j

⎡

⎢
⎢
⎣

1
xi j
yi j
zi j

⎤

⎥
⎥
⎦W 0

i jφ j . (17)

Substitute (17) into (16), considering that for the center
point i , xii = 0, yii = 0, zii = 0, we gets:

φ̃i = [1 0 0 0
]

⎡

⎢
⎢
⎣

c1
c2
c3
c4

⎤

⎥
⎥
⎦ =

N∑

j

⎛

⎜
⎜
⎝

[
1 0 0 0

]
A−1
i

⎡

⎢
⎢
⎣

1
xi j
yi j
zi j

⎤

⎥
⎥
⎦W 0

i jφ j

⎞

⎟
⎟
⎠

=
N∑

j

WMLS
i j φ j ,

where

WMLS
i j = [1 0 0 0

]
A−1
i

⎡

⎢
⎢
⎣

1
xi j
yi j
zi j

⎤

⎥
⎥
⎦W 0

i j ,

the same as (13). It can easily understood that in 2-D space,
it becomes (8).
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