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A B S T R A C T

A discrete element model consisting of irregular crushable filling particles and a flexible wire mesh is
established. The numerical model is validated against the static net punching test and the dynamic pendulum
impact test to ensure that the large irreversible plastic deformations and the impact forces during successive
impacts can be captured. The impact force reduces at small friction coefficients, which is associated with the
significant particle rearrangement during the impact process. The important role of friction is further confirmed
by the energy evolution, showing that friction is the dominant mechanism for energy dissipation, instead of
the more intuitionistic collision or particle crushing. Besides, the increase of impact force with the number of
impacts becomes more significant at a higher impact energy due to the faster rate of momentum exchange.
A bounce-back behavior of the boulder is observed when the impact energy is low, which may attenuate the
impact force like the reflection waves in real debris flow events where multiple boulders are present. Our
results highlight the combined effects of contact properties and impact energy, which are valuable in the
design of rigid barriers shielded by rock-filled gabions for hazard mitigation in engineering practice.
,

1. Introduction

Debris flows are well known for their destructive nature, usually
bringing huge economic losses and heavy casualties. Debris flows are
composed of polydisperse soil particles and water, flowing downs-
lope rapidly under the influence of gravity in the form of multiple
surges. As a result of the heterogeneous flow architecture, particle-size
segregation plays an important role in the transport and deposition
processes and results in unique features of debris flows, including
the formation of bouldery fronts and levees (Iverson, 1997; Johnson
et al., 2012). To mitigate debris flow hazards, protection works are
usually installed along the flow path for interception (Hübl et al.,
2009; Volkwein et al., 2011; Vagnon, 2020; Huang and Zhang, 2022).
Therefore, understanding the underlying mechanisms of the complex
flow-structure interactions for the better prediction of impact force
becomes the key to guide more efficient and economic engineering
design of countermeasures.

Rigid barriers are large geotechnical structures installed at the
downstream of debris flow gullies. In practice, rigid barriers are some-
times shielded by gabions, which are cellular structures fabricated
from interconnected wire mesh baskets and filled with rock fragments
(see Fig. 1). The function of gabions is to diffuse the concentrated
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impact forces from the fast moving boulders and to absorb kinetic
energies, thereby reducing the force transmitted to the back rigid wall.
According to the large scale pendulum impact test carried out by Ng
et al. (2016), the maximum impact force estimated from the theoretical
Hertz equation can be seven times larger than the measured value when
a gabion cushion layer is applied. In addition, due to the cellular nature
of gabions, maintenance work can be easily performed by repairing or
replacing the damaged baskets (Lambert et al., 2014).

However, characterizing the mechanical response of the gabion
cushion layer under impacts is nontrivial (Bertrand et al., 2005; Bertrand
2008). On one hand, the wire mesh baskets provide confinement to
the filling granular materials; on the other hand, the rock fragments
provide internal resistance to external loadings and dissipate energy
via large plastic deformations. Many experiments have been conducted
to investigate the effectiveness of the gabion cushion layer. Lambert
et al. (2009) performed a series of impact tests by dropping a spherical
boulder onto a single cubic gabion and found that coarse filling ma-
terials are more effective for reducing the impact force due to particle
crushing. Also, the boundary condition can make a significant influence
and the lowest impact force was found when the gabion was free-to-
deform laterally. Later on, a real-scale embankment protected by two
266-352X/© 2024 Elsevier Ltd. All rights reserved.
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Fig. 1. The urban area is separated from the natural terrain by a huge gabion shielded
concrete wall to prevent debris flow hazards.
Source: This picture was taken in 2018 during a site visit to Yu Tung Road, Hong Kong.

layers made from gabions filled with either stones or a sand-shredded-
tire mixture was constructed by Lambert et al. (2014) to study the
deformation and the dynamic responses under impacts. Large-scale
pendulum impact tests were performed by Ng et al. (2016), focusing
on the performance and robustness of gabion shielded rigid barriers
under successive boulder impacts, which is commonly encountered in
real debris flow events. Design procedures for the gabion shielded rigid
barriers have also been proposed according to the experimental results
from the large-scale pendulum impact tests (Perera et al., 2021; Perera
and Lam, 2023).

As an alternative to expensive field tests, numerical models have
been developed to predict the impact force and the penetration depth
for the design of the gabion cushion layer. Although continuum meth-
ods can be applied to analyze the energy absorption capacity of cushion
materials with the use of a proper constitutive law (Coelho et al.,
2013; Brocato, 2020), a complicated remeshing algorithm has be to
implemented to account for large deformations (Breugnot et al., 2016).
Even so, the particle crushing at the impact vicinity and the local
evolution of contact force chains in a granular assembly still cannot be
easily reproduced using continuum approaches. Therefore, the Discrete
Element Method (DEM) has been extensively applied for the numerical
analysis of the cushion performance of rock filled gabions, despite its
relatively larger computational cost (Bertrand, 2008; Breugnot et al.,
2016; Su et al., 2019, 2021; Su and Choi, 2021). Bertrand et al.
(2005), Bertrand (2008) simulated a granular media confined by a
metal wire mesh explicitly using DEM. The calibrated model was able
to reproduce the force development in both quasi-static and dynamic
loading conditions. A hybrid approach coupling the finite difference
method and DEM was adopted by Breugnot et al. (2016) to simulate the
small and large deformation areas of a real-scale embankment shielded
by rock filled gabions under boulder impacts in an accurate and ef-
ficient manner. Besides, parametric studies of particle size, particle
shape, cushioning thickness and particle crushing strength altering the
mechanical response of rock-filled gabions under boulder impacts have
been carried out (Bourrier et al., 2011; Su et al., 2019, 2021; Su and
Choi, 2021).

Up to now, many numerical simulations and experiments focus
on the performance of the gabion cushion layer under one single
boulder impact, although successive impacts that can be caused by
multiple surges of debris flows seem to be the more realistic loading
pattern (Heymann et al., 2010; Ng et al., 2016; Perera and Lam,
2023; Yan et al., 2023). Here we carry out DEM simulations of rock-
filled gabions under successive boulder impacts, as a supplementary
study to the experimental work conducted by Ng et al. (2016). DEM
modeling allows us to get access to additional information (e.g., energy
dissipations due to different mechanisms) that cannot be easily mea-
2

sured in experiments, and to investigate the effects of micro-mechanical
Fig. 2. (a) Sketch of two interacting balls: ball 𝑖 in blue and ball 𝑗 in red. (b) Sketch
of the spring–dashpot model for the calculation of normal (𝑭 𝑛) and tangential (𝑭 𝑡)
contact forces between two interacting balls.

parameters (e.g., inter-particle friction coefficient and damping ratio).
The impact energy is also varied to examine its influence on the cush-
ioning performance and how it deteriorates as the number of impacts
increases.

This paper is organized as follows. Section 2 presents the detailed
numerical techniques to simulate rock-filled gabions using DEM, to-
gether with a simplified model setup resembling the large-scale pen-
dulum impact test. The numerical model is validated against the ex-
perimental measurements (both forces and deformations) in Section 3.
Then, the effects of the contact properties and the impact energy are
discussed in Section 4. Conclusions are drawn in Section 5.

2. Numerical configuration

2.1. Discrete element method

All numerical simulations in this study are run using the Itasca
software PFC3D (Particle Flow Code in three dimension), which is
based on the widely used discrete element method (DEM) for the
simulation of granular materials (Cundall and Strack, 1979). In the
classic formulation of soft-sphere DEM, the dynamics of each individual
ball is tracked following Newton’s second law of motion. Balls are
treated as non-deformable rigid bodies that can translate and rotate, but
with soft contacts allowing small overlaps between interacting objects,
see Fig. 2(a). The overlap between spherical balls 𝑖 and 𝑗 is easy to
calculate:

𝜹𝑖𝑗 = (𝑟𝑖 + 𝑟𝑗 − 𝑟𝑖𝑗 )𝒏, (1)

where 𝑟𝑖 and 𝑟𝑗 are the radii of balls 𝑖 and 𝑗, respectively. The spacing
between the ball centers is denoted as 𝑟𝑖𝑗 and 𝒏 is the unit normal
along the line connecting the ball centers. Note that in this study we
specifically use ball to denote the spherical element in DEM and use
particle to denote the rock fragment inside the gabion.

In this study, three different contact models have been adopted to
calculate the contact forces: (i) the linear parallel bond model (Po-
tyondy and Cundall, 2004) is installed at ball–ball contacts if both
interacting balls belong to the same rock particle inside the gabion;
(ii) the soft bond model (Ma and Huang, 2018) is installed at ball–ball
contacts if both interacting balls belong to the wire mesh constituting
the gabion; (iii) the linear model is installed at any other ball–ball
contacts and all ball–wall contacts. Details of the first two contact
models for the simulation of crushable rock particles and wire mesh
will be introduced in Sections 2.2 and 2.3. As for the linear model,
the contact forces can be calculated based on a simple spring–dashpot
model (Cundall and Strack, 1979), as shown in Fig. 2(b). The normal
contact force 𝑭 𝑛 is given by:

𝑭 = 𝑘 𝜹 − 𝑐 𝛥𝒖 , (2)
𝑛 𝑛 𝑛 𝑛 𝑛
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where 𝑘𝑛 and 𝑐𝑛 are the stiffness and the damping coefficient in the
contact normal direction. The relative normal velocity is denoted by
𝛥𝒖𝑛. The tangential contact force 𝑭 𝑡 is written as:

𝑭 𝑡 = −𝑘𝑡 ∫

𝑡𝑐

𝑡𝑐,0
𝛥𝒖𝑡 𝑑𝑡 − 𝑐𝑡𝛥𝒖𝑡, (3)

where 𝑘𝑡 and 𝑐𝑡 are the stiffness and damping coefficient in the tan-
gential direction and the relative tangential velocity is denoted by 𝛥𝒖𝑡.
The integral corresponds to an incremental spring that stores energy
from the relative tangential motion over the contact duration from 𝑡𝑐,0
to 𝑡𝑐 . The negative signs on the right hand side of Eq. (3) indicate that
the tangential force points to a direction opposite to the tangential dis-
placement. The two contacting balls will slide against each other when
the magnitude of the tangential force reaches the Coulomb friction 𝜇𝐹𝑛,
where 𝜇 is the smaller friction coefficient of the two balls in contact.
The model parameters (𝑘𝑛, 𝑘𝑡, 𝑐𝑛, 𝑐𝑡) are constants defining the material
properties that can be measured directly or indirectly. In PFC3D, the
damping coefficients (𝑐𝑛 and 𝑐𝑡) are set by the critical damping ratios
(𝛽𝑛 and 𝛽𝑡), which are required to account for the energy loss due to
collisions. The damping ratio can be further converted to the restitution
coefficient by exp (−𝛽𝑛𝜋∕

√

1 − 𝛽2𝑛 ) in the normal direction, and a value
of 𝛽𝑛 = 0.1 gives a restitution coefficient close to 0.73 during a drop test.

Based on the contact forces, a resultant torque (𝑻 𝑐) acting on a ball
can be calculated. Then, its translational and rotational velocities can
be updated according to Newton’s second law of motion:

𝑚𝒂 = 𝑭 𝑡 + 𝑭 𝑛 +𝑮, (4a)

𝐼�̇� = 𝑻 𝑐 , (4b)

where 𝑚 and 𝐼 are the mass and the moment of inertia of the ball.
The symbols 𝒂 and 𝝎 denote the acceleration and angular velocity,
respectively. An explicit scheme is adopted to integrate Eq. (4) over
a small time step to update the ball positions and orientations.

2.2. Discrete element modeling of filling materials

One of the difficulties to capture the mechanical responses of rock-
filled gabions is the irregular shape of the filling particles combined
with their crushable nature under large impact forces. Following Su
et al. (2021), each rock particle is generated by aggregating balls using
the linear parallel bond model, which is a popular approach to model
crushable materials (Potyondy and Cundall, 2004). The linear parallel
bond model in PFC consists of two parts: one is the linear model
introduced in Section 2.1, which is still active if there exists a positive
overlap 𝛿𝑖𝑗 ; the other is the parallel bond based on the classic beam
theory, which can be visualized as a series of elastic springs distributed
over a finite contact area between two interacting balls (Potyondy and
Cundall, 2004). Different from the linear model, the parallel bond can
resist both tension and bending moment. The normal and tangential
contact forces, 𝐹𝑛 and 𝐹𝑡, and the bending moment (�̄�) are calculated
in an incremental form:

𝛥𝐹𝑛 = �̄�𝑛�̄�𝛥𝛿𝑛, 𝛥𝐹𝑡 = −�̄�𝑡�̄�𝛥𝛿𝑡, 𝛥�̄� = −�̄�𝑛𝐼𝛥�̄�, (5)

where the symbols with a bar above are quantities associated with the
bond model. The normal and shear stiffnesses per unit area are denoted
by �̄�𝑛 and �̄�𝑡, respectively. The contact area (�̄� = 𝜋�̄�2) is normally
defined by a radius multiplier (�̄�), where �̄� = �̄�min(𝑟𝑖, 𝑟𝑗 ). The normal
and tangential displacements are denoted by 𝛿𝑛 and 𝛿𝑡, respectively.
The moment of inertia of the parallel bond and the relative rotation
angle are denoted by 𝐼 and �̄�, respectively.

Note that 𝛥𝐹𝑛 and 𝛥𝛿𝑛 are assumed to be positive when the paral-
lel bond is stretched, and the corresponding stress–strain behavior is
presented in Fig. 3. There exists a maximum tensile stress or a bond
strength (𝜎𝑚𝑎𝑥) that delimit the elastic state and the broken state (the
normal stress immediately drops to zero when 𝜎𝑚𝑎𝑥 is reached, see the
blue dashed line in Fig. 3). Also, the parallel bond is unrecoverable
3

Fig. 3. Comparison between the linear parallel bond model and soft bond model
regarding the stress–strain relationship under loading and unloading when the bond
is stretched. The blue and red lines indicate the stress–strain behaviors of the linear
parallel bond model and the soft bond model, respectively, after the strength 𝜎𝑚𝑎𝑥 is
reached.

Fig. 4. Four crushable particles (or agglomerates) in different shapes formed by
bonding balls using the linear parallel bond model.

once breakage has occurred. A similar behavior can be observed if the
parallel bond is sheared or bended.

In this study, crushable particles or agglomerates with irregular
shapes are created by carving a big chunk of balls arranged in a
hexagonal close packing (McDowell and Harireche, 2002; Cheng et al.,
2003; Bolton et al., 2008). In total, there are four different shapes
reconstructed using around 130 spherical balls (see Fig. 4), covering
both rounded and angular morphologies to account for the complex
particle shape of rock fragments. Each constituent ball has a radius of
20 mm, resulting in a total volume of 0.006 m3 enclosed by the surface
of the shape, which is roughly the average size of rock particles used
in the field to construct rock filled gabions (Ng et al., 2016; Su et al.,
2021). The equivalent diameter of the particles if they are in a spherical
shape and with the same volume is about 225 mm, which falls in the
preferred size range (from 150 mm to 300 mm) suggested by the local
design guide for retaining structures (GEO, 1993). The neighboring
balls are connected by the parallel bonds, forming a stable structure
(similar to truss with fixed joints) that can deform and fracture under
loading.

To calibrate the model parameters for the filling particles, DEM
simulations of the standard uniaxial compression test are carried out.
The numerical results are compared to the experimental measurements
conducted by Su et al. (2021). The rock samples are in a cylindrical
shape with a height and a diameter equal to 200 mm and 100 mm,
respectively. The measured rock density is around 2700 kg/m3. In
the DEM simulation, a cylinder with the same dimension of the rock
samples in the experiments is constructed using the same approach
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Fig. 5. Comparison between the numerical and experimental results regarding the
stress–strain relationship in a standard uniaxial compression test. The experimental
curve is extracted from Su et al. (2021). The insets show the minor and the
major fractures of the rock sample under compression, which are responsible for the
significant drops of the measured stress–strain curve.

for creating crushable filling particles, as shown in Fig. 4. The model
parameters requiring calibration include the stiffnesses and the normal-
to-shear stiffness ratios for the contact and the parallel bond, the bond
strength (𝜎𝑚𝑎𝑥), the normal and tangential damping ratios (𝛽𝑛 and 𝛽𝑡),
and the friction coefficient (𝜇). To reduce the number of calibration
parameters, it is assumed that the ball–ball contact and the parallel
bond share the same elastic properties such that their stiffnesses can
be defined by a single Young’s modulus 𝐸, which can be converted to
the normal stiffnesses via 𝑘𝑛 = 𝐸𝐴∕𝐿 and �̄�𝑛 = 𝐸∕𝐿. The parameters 𝐴
and 𝐿 denote an area and a length, respectively. For ball–ball contacts,
𝐴 = 𝜋𝑟2 and 𝐿 = 𝑟𝑖 + 𝑟𝑗 , where 𝑟𝑖 and 𝑟𝑗 are the radii of the two
contacting balls and 𝑟 = min(𝑟𝑖, 𝑟𝑗 ). For ball-wall contacts, the area 𝐴
still equals to 𝜋𝑟2 but both 𝐿 and 𝑟 are defined as the radius of the
particle.

Fig. 5 presents the typical stress–strain behavior of a rock sample
under compression. To match the experimental measurements, the
Young’s modulus and the normal-to-shear stiffness ratio are set to be
1.0 GPa and 2.0, respectively. The bond strength (𝜎𝑚𝑎𝑥) is set to be 6
MPa. The friction coefficient (𝜇) and the damping ratios (𝛽𝑛 and 𝛽𝑡)
are set to be 0.3 and 0.1, respectively. Note that multiple drops of
the measured stress–strain curve before the major failure are observed,
which are caused by the minor fractures, see the inset of Fig. 5.
Such minor fractures are likely related to the variability of strength
introduced by the internal flaws and discontinuities in natural rocks.
Since the DEM model consists of a regular packing of spherical balls
and no variability is applied to the bonding strength, the compressive
stress increases almost linearly until a major failure occurs. All in
all, the calibrated DEM model agrees with the experiment fairly well
regarding the macroscopic stiffness and the peak strength. Note that the
stress–strain behavior corresponding to the lowest uniaxial compressive
strength measured by Su et al. (2021) has been taken for calibration
to account for the possible degradation of the filling materials due to
weathering, crushing, and abrasion. Readers are referred to Su et al.
(2021) for the combined effect of crushing strength and particle shape.
In Section 4.1 of the current work, the values for the friction coefficient
and the damping ratios are varied to examine their influence on the
impact characteristics of rock filled gabions.

2.3. Discrete element modeling of wire mesh

Two modeling strategies have been adopted to simulate wire meshes
using DEM successfully, referring to the wire-node method (Bertrand
et al., 2005, 2006; Nicot et al., 2007; Bertrand, 2008; Bertrand et al.,
2008; Li and Zhao, 2018; Pol et al., 2021) and the wire-cylinder
method (Bourrier et al., 2013; Albaba et al., 2017; Effeindzourou et al.,
4

2017; Marigo et al., 2021). The former describes the wire mesh by a
collection of balls at nodes linked by remote interaction forces, such
as the parallel bond introduced in Section 2.2. The latter simulates the
wire mesh explicitly by means of interconnected cylinders. Here, we
choose to use the wire-node approach, which allows the use of nodal
balls larger than the wire mesh, resulting in a better performance in
computational efficiency.

When the wire-node method is adopted, the strength of wire mesh
to resist compression and bending is usually ignored by assuming
an immediate onset of buckling (Thoeni et al., 2013). However, this
assumption may lead to noticeable errors when the wire cross-section
enlarges. In this study, a soft bond contact model that can resist both
tension and compression is adopted to capture the mechanical response
of each wire mesh element (one segment between two nodal balls).
Similarly to the parallel bond model, the soft bond fails if the bond
strength is exceeded either in shear or in tension. In addition, the soft
bond model has the ability to account for the potential irreversible
plastic deformation of the wire mesh under loading. The softening
stress–strain behavior is implemented into the normal component of
the contact, which is plotted in Fig. 3. Compared to the parallel bond
model, a softening stage exists after 𝜎𝑚𝑎𝑥 is reached and before bond
breakage. The normal displacement during the softening stage can be
calculated as (Ma and Huang, 2018):

𝛿𝑛 =
𝜎𝑚𝑎𝑥
�̄�𝑛

+
𝜎𝑚𝑎𝑥 − 𝐹𝑛∕�̄�

𝜁�̄�𝑛
, (6)

where 𝜁 is the softening factor defined as the ratio between the loading
and softening stiffnesses, i.e., �̄�𝑙 = 𝜁�̄�𝑢 and �̄�𝑙 = �̄�𝑛𝐴. An additional
tensile strength factor 𝛾, which varies between 0 and 1, is applied
to define a critical stress level (𝛾𝜎𝑚𝑎𝑥) for the bond breakage. When
the softening factor 𝜁 approaches 0 or the tensile strength factor 𝛾
approaches 1, the soft bond behaves just like the parallel bond, which
is associated with a brittle failure behavior.

To test the performance of the soft bond model for the simulation
of wire mesh, DEM simulations of the standard net punching test are
carried out. Fig. 6(a) shows the geometries of the wire mesh and
the punching element, which are set according to the experiments
conducted by Pol et al. (2021). A square mesh panel of dimensions 3 m
by 3 m, which consists of a set of interconnected hexagonal cells, is
simulated. Each hexagonal cell is composed of single wires (oriented
in ±45◦ to the horizontal direction) and double-twisted wires (oriented
vertically). The dimensions in the horizontal and vertical directions of
a hexagonal cell are measured to be 8 cm and 12 cm, respectively. The
punching element is in the shape of a spherical dome with a diameter
𝐷 = 1.0 m and a curvature radius 𝑅 = 1.2 m. The dune edge is rounded
with a curvature radius of 0.05 m.

Following Previtali et al. (2020), a mesh sensitivity analysis is
performed and three different resolutions have been tested using 𝑁 = 2,
3, 4 balls to construct the single and the double-twisted wires, as shown
in Fig. 6(b). To save the computational cost, the diameter of the nodal
balls is set to be 𝑑𝑛 = 10.8 mm, which is four times of the actual wire
diameter (Pol et al., 2021), so the radius multiplier becomes �̄� = 0.25.
In this study, it is assumed that the single wire and the double-twisted
wire share exactly the same material and contact properties, except
that the cross-sectional area of the double-twisted wire is doubled. This
simplification is considered to be more acceptable based on the fact that
the single and the double-twisted wires behave similarly in a tensile test
regarding the stress–strain relationship (Thoeni et al., 2013; Pol et al.,
2021). As a result, the number of model parameters for calibration is
reduced. The density of nodal balls depends on the resolution and it is
set so that the total weight equals to the actual mesh panel and thus
maintains the inertia. In DEM simulations, the macroscopic mechanical
response is determined by the microscopic contact properties. To match
the experimental measurements, the Young’s modulus and the Poisson’s
ratio are set to be 12.5 GPa and 0.3, respectively. Note that the
calibrated Young’s modulus is about one order of magnitude smaller
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Fig. 6. Net punching test. (a) Geometries of the mesh panel and the punching element.
(b) Sketches of the double-twisted hexagonal wire mesh with segments simulated using
2, 3, and 4 balls. The red and blue segments represent the double-twisted and single
wire, respectively.

than the actual property of mesh wires (Bertrand et al., 2008). It is due
to the fact that the soft bond model assumes an elastic response of the
mesh wire before failure so that the resulting Young’s modulus becomes
an apparent value, which should not be taken as the intrinsic material
property. Generally speaking, the apparent Young’s modulus reduces as
the deformation increases. The tensile strength 𝜎𝑚𝑎𝑥 of the soft bonds
is set to be 520 MPa. The softening factor 𝜁 and the tensile strength
factor 𝛾 are set to be 200 and 0.9, respectively. The friction coefficient
is set to be 0.1.

A constant velocity of 0.1 m/s is assigned to the punching element
in the out-of-plane direction of the mesh panel. Note that a larger
loading velocity is applied in the DEM simulations compared to the
experiments, which does not alter the results significantly and saves
computation time (Pol et al., 2021). The translational displacement
of the nodal balls at the outer boundary is inhibited to mimic the
fixed boundary condition in the experiment. The total force acting on
the punching element is plotted against the displacement in Fig. 7.
All simulations are run for 0.7 s, before which a major failure to
the mesh panel takes place indicated by the sudden drop of loading
force. In general, the influence of the resolution 𝑁 on the mechanical
response of the mesh panel is small. A slightly stiffer response and a
higher peak force before failure are observed when 𝑁 = 2, which is
commonly applied in literature. The force–displacement curves from
DEM simulations with 𝑁 = 3 and 𝑁 = 4 almost overlap and agree
with the experimental data. Since the soft bond model allows bending
moment to develop within the virtual wire strands based on Eq. (5), a
large influence of 𝑁 is expected if bending is the dominant mechanism
due to the higher degree of freedom introduced by the insertion of ad-
ditional nodal balls. Meanwhile, the small influence of 𝑁 in the actual
simulation demonstrates that the wire strands are mainly exposed to
tensile loading during the punching test and bending is a negligible
mechanism. In the following simulation of a rock filled gabion, a mesh
resolution of 𝑁 = 3 is adopted. Note that using a smaller resolution of
𝑁 = 2 shall be totally viable due to its small influence, if the computa-
tional efficiency is of major concern. Also, compared to the numerical
results from the parallel bond model (Previtali et al., 2020), our results
show that the soft bond model seems to be able to better reproduce
the mechanical response of the mesh panel, especially regarding the
reduced out-of-plane stiffness before the failure. Finally, although fair
results have been obtained with the simplified DEM model in this study,
the difference between the single and the double-twisted wires should
5

Fig. 7. Comparison between the numerical and experimental results regarding the
force–displacement relationship in a standard net punching test. The experimental data
is measured by Thoeni et al. (2013).

not be overlooked when their stress–strain relationships become very
different (Bertrand et al., 2008). In such cases, it is suggested that the
contact properties for the single and the double-twisted wires should
be calibrated against experimental measurements separately.

2.4. Model setup for rock-filled gabion

To study the cushion performance of rock-filled gabions, we perform
one-to-one numerical simulation of the large-scale pendulum impact
test conduced by Ng et al. (2016). In the experiment, a gabion cushion
layer is installed in the front of a heavy concrete wall (around 32.4
tones), which is 3 m in length, 3 m in width and 1.5 m in thickness.
Nine cubical gabion cells are stacked together in a 3-by-3 pattern,
forming the gabion cushion layer of 3 m in length, 3 m in width and
1.0 m in thickness. Each gabion cell is filled with granitic fragments and
weights about 15 kN. The gabion baskets are made of hexagonal woven
wire meshes with a wire diameter of 2.7 mm, which is the same size of
the single wire used in the net punching test (see Section 2.3). Thus, the
same properties of the single wire in the punching test are adopted here
for the simulation of the wire mesh. A large spherical concrete boulder
with a diameter and a mass of 1.16 m and 2000 kg, respectively, is
connected to a fixed frame using steel strand cables, which can be lifted
up and released at different heights to initiate a sway motion before
impacting on the gabion cushion layer and the rigid concrete wall. The
details of the test procedures and the instrumentations are available in
the Ref. Ng et al. (2016).

There are mainly four steps to build a DEM model for rock-filled
gabions under successive boulder impacts, as shown in Fig. 8. First,
a box bounded by rigid walls and in the shape of the entire gabion
cushion layer is filled with the four types of particles presented in
Fig. 4. In total, there are 732 number of particles, corresponding to 183
particles per each type. The resulting packing fraction is about 0.49 and
the unit weight of the gabion cushion layer is around 13 kN/m3, which
is smaller than the value (i.e., 15 kN/m3) in the experiment (Ng et al.,
2016). The reason is twofold. First, the filling particles are stacked man-
ually by human so that the particles can be better aligned to achieve a
higher packing density. Such a manual process is rather difficult to be
replicated in any numerical simulation. It is only possible if the grain
skeleton is provided, which requires advanced scanning techniques and
is rarely performed even in small-scale elementary tests. Therefore, a
random packing is adopted in this work, resulting in a relatively looser
state. Second, the packing density also depends on the particle shape
and particle size distribution. The detailed particle information is not
available and the related model parameters are estimated according
to the local guidelines (GEO, 1993) and visual examinations of the
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Fig. 8. Procedures to setup a DEM model for rock-filled gabions under successive boulder impacts. (a) Step 1: fill the box bounded by rigid walls with clumps. (b) Step 2: replace
the front wall with nodal balls for the wire mesh and subdivide the back wall. (c) Step 3: convert clumps to agglomerates and bond the nodal balls for the wire mesh. (d) Step
4: impact the agglomerates and the wire mesh with a boulder.
experimental condition (Ng et al., 2016) to instantiate our simulation.
Also, to study the potential mass effect in such a dynamic problem,
a sensitivity analysis has been performed by increasing the particle
density to match the unit weight of the experimental value and the
result (not shown here) indicates that the reduction of unit weight
from 15 kN/m3 to 13 kN/m3 only has a small effect on the mechanical
response. The small mass effect is likely due to the fact that the gabion
cushion layer is well confined by the rigid walls during the whole
impact process. Note that the clump logic is used here so that all balls
within one particle moves together following a rigid body motion (de
Bono and McDowell, 2016).

Second, the front wall (facing left) is replaced with nodal balls
for the wire mesh and all the other walls remain rigid to mimic the
surrounding steel frames and the thick concrete (back) wall in the
physical experiment (Ng et al., 2016). To prevent the mesh panel
from moving during impacts, the translational velocities of the balls
at the edges are fixed to be zero. Previous real-scale experiments on
gabion structures subjected to boulder impacts have shown that the
tensile resistance introduced by the wire mesh baskets has the ability
to provide extra confinement to the filling particles and potentially
increase the zone of the structure associated with the impact response
under large deformations (Lambert et al., 2014, 2020). Due to the rigid
boundary conditions provided by the steel frames and the concrete
wall, together with the relatively small size of the gabion cushion
layer in this study, the deformations in the transverse and along the
impact directions of the whole structure are limited. Therefore, the
interactions between the wire meshes belonging to different gabion
cells are considered as minor and are ignored in the DEM simulation.
Note that the lateral confinement to the particles inside a gabion cell
can still be provided by the particles in neighboring cells and the rigid
boundaries. The back wall (facing right) is subdivided into 81 (i.e., 9 by
9) small squares with a length of 333 mm so that local measurements
of the forces transmitted to the back wall can be conducted. Third, the
clump logic is removed and balls belonging to the same particle are
bonded with the linear parallel bond model, see Section 2.2. The nodal
balls of the wire mesh are connected by remote interactions defined by
the soft bond model, see Section 2.3.

Finally, a large particle with the same properties of the concrete
boulder is created and is assigned with a initial velocity moving from
left to right for the impact on the gabion cushion layer. The abovemen-
tioned DEM model for rock-filled gabions is derived from the simple
box model from Su et al. (2021), in which the gabion baskets are
ignored and the filling particles are simply enclosed by rigid walls.
The inclusion of a layer of wire mesh facing the boulder has the
advantage of capturing the complex interactions among the boulder,
the wire mesh and the filling particles more accurately, which may
play a major role especially when successive impacts are considered
and large plastic deformations or even breakage of the wire mesh may
take place (Ng et al., 2016). Note that our DEM model is still largely
simplified compared to real gabions, and more sophisticated models
exist in literature, e.g., the models from Effeindzourou et al. (2017)
and Marigo et al. (2021).
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3. Comparison between numerical and experimental results

In this section, we present the results of a one-to-one numerical
simulation of the large-scale pendulum impact test carried out by Ng
et al. (2016). Detailed information of the boulder impact force, the
load transmitted to the rigid barrier and the deformation of the gabion
cushion layer has been measured in the experiment, which will be
utilized to examine the performance of our DEM model.

3.1. Impact dynamics and boulder impact force

Fig. 9(a) presents the time history of the boulder velocity. Initially,
a positive velocity of 4.5 m/s moving towards the gabion cushion
layer is assigned to the boulder so that the simulation mimics the
condition with the impact energy equal to 20 kJ. The velocity starts to
decrease as soon as the boulder touches the wire mesh and the filling
particles, progressively transferring the kinetic energy of the boulder
to the gabion cushion layer in the form of kinetic energy and strain
energy (Lambert et al., 2009). During the impact process, a part of
the energy is dissipated due to inter-particle interactions (i.e., friction
and collision) and particle crushing. According to Ng et al. (2016), a
maximum impact duration of 0.1 s is observed for the first impact.
To ensure every impact process is fully completed, a longer impact
duration of 0.2 s is simulated. After that, the boulder is moved back
to its initial position with a constant velocity of 4.5 m/s. Then, the
boulder is stopped and the simulation continues for another 0.1 s
so that a temporary equilibrium state is obtained (see the negligible
kinetic energy of particles inside the gabion in Section 4). Up to now,
a full cycle of the impact simulation is finished and the gabion cushion
layer is ready for the next boulder impact. In this study, the time
period associated with a continuous decline of the boulder velocity is
considered as one impact duration and six successive impacts in total
have been simulated. Fig. 9(a) shows that the impact duration of the
first impact is significantly longer than the follow-up impacts, which
qualitatively agrees with the experimental measurements (Ng et al.,
2016).

In DEM simulations, the boulder impact force can be calculated by
the product of the boulder mass and acceleration, or by summing up the
𝑥-component of all the contact forces acting on the boulder. We have
checked that both methods yield rather similar results with a minor
difference. The time history of the boulder impact force is presented in
Fig. 9(b). In every successive impact, the boulder impact force increases
suddenly to a peak value and then gradually decreases. Interestingly,
the peak impact force becomes significantly larger after the first two
impacts and reaches its maximum during the last (i.e., the sixth) im-
pact, indicating that the gabion cushion layer is densified and gradually
stiffens under successive impacts. The sudden drop of the peak impact
force after the third impact is attributed to the collapse of one or
multiple strong force chains that originally counteract the boulder
impact motion due to particle crushing and rearrangement (Tsoungui
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Fig. 9. Time histories of (a) the boulder velocity and (b) the impact force during six successive boulder impacts when the impact energy is 20 kJ.
et al., 1999; Zhang et al., 2017). In general, Fig. 9 shows that the larger
peak impact force is associated with the shorter impact duration when
the impact energy is fixed.

In the experiment, an accelerometer is attached to the back of the
concrete boulder to record the deceleration so that the impact force
can be calculated according to Newton’s second law (Ng et al., 2016).
Fig. 10 compares the numerical result and the experimental measure-
ment regarding the temporal evolution of the boulder impact force for
the first and sixth impacts. Several differences can be observed. First,
the numerical result fluctuates much more than the experimental data,
which can be caused by the higher data acquisition frequency in the
numerical simulation. Note that the accuracy of the experimental data
highly depends on the performance of the instrumentation and the sen-
sor raw data could be post-treated (i.e., filtered or smoothed). Lambert
et al. (2009) carried out a similar impact test by dropping a spherical
boulder onto a cubic geocell and large fluctuations were observed for
the measured impact force. Second, the curves for the time history of
the measured boulder impact force are quite symmetric with nearly the
same increasing and decreasing rates. Meanwhile, the numerical results
show that the boulder impact force increases rapidly but decreases
more gently. Finally, although the densification or stiffening effect
is present in both the numerical simulation and the experiment, the
corresponding peak values do not match very well. More specifically,
the peak impact forces for the first and sixth impacts in the numerical
simulation are 252 kN and 308 kN, respectively, which are higher
and lower than the measured values, i.e., about 111 kN and 397
kN, respectively. The discrepancies between the numerical and the
experimental data in terms of the boulder impact force are expected,
since the size ratio between the gabion and the particle is relatively
small (about 10 to 1) and a high variability of the granular fabric exists
due to the finite size effect. The same problem has been encountered
previously when examining the force on rock filled gabions in both
static and dynamic conditions (Breugnot et al., 2016). Therefore, the
comparison of experimental data with numerical results should be
conducted with caution and it is more important to capture the trend,
instead of matching the specific values by tuning the model parameters.

3.2. Load transmitted to the rigid barrier

The key function of the gabion cushion layer is to diffuse the
concentrated impact force, and thereby reducing the load transmitted
to the rigid barrier. Fig. 11 compares the numerical and experimental
data regarding the spatial distribution of the maximum transmitted
force for the first and sixth impacts at an energy level of 20 kJ. First, it
should be noted that the magnitude of the transmitted force depends on
the size of the measurement area (i.e., the load cell in the experiment).
According to Ng et al. (2016), the dimension of the load cell surface
7

Fig. 10. Comparison between the numerical and experimental data regarding the time
history of the boulder impact force for the first and the sixth impacts when the impact
energy is 20 kJ. The experimental data is measured by Ng et al. (2016).

used in the experiment is 150 mm by 150 mm in length. However,
the transmitted force in the numerical simulation is measured locally
by a square with a length of 333 mm (see Section 2.4). Assuming the
transmitted force is linearly proportional to the measurement area, we
have magnified the experimental data by a factor of 4.93.

Fig. 11 shows that the transmitted force is larger close to the
center of the gabion cushion layer and gradually decreases as moving
outwards. The DEM result shows that the transmitted force of the sixth
impact is generally larger than that of the first impact, similar to the
boulder impact force as shown in Fig. 10. However, there is only a small
difference observed for the measured transmitted force during the first
and sixth impacts in the experiment. It is probably due to the fact that,
in the experiment, the impact direction is not entirely perpendicular
to the rigid barrier after the first impact due to the swaying motion of
the boulder (Ng et al., 2016). As a result, the load cell only measures
a component of the transmitted force, which shall be lower than the
value if a perpendicular impact is enforced as it is in the simulation.
On the other hand, due to the small number of filling particles, the load
transfer through a coarse granular assemblage only involves a limited
number of force chains, which results in inadequate contact points
on relatively small sensor plates and makes the measurements highly
variable in both experiment and simulation. Therefore, the difference
between the numerical and experimental data of the transmitted force
is expected, despite a closer match is observed for the distribution along

the horizontal centerline, as shown in Fig. 11(b).
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Fig. 11. Comparison between the numerical and experimental data regarding the spatial distribution of the maximum transmitted force for the first and the sixth impacts along
a) the vertical and (b) the horizontal centerlines when the impact energy is 20 kJ. The experimental data is measured by Ng et al. (2016).
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Fig. 12. Comparison between the numerical and experimental data regarding the
distribution of the penetration depth for the first and the sixth impacts along the
horizontal centerline when the impact energy is 20 kJ. The experimental data is
measured by Ng et al. (2016).

3.3. Deformation of the gabion cushion layer

The deformation of the gabion cushion layer can be characterized by
the penetration depth of the boulder (or the outline of the crater) after
successive impacts, which is the key parameter to design the minimum
thickness of the cushion layer in engineering practice. Fig. 12 compares
the simulation and the experiment in terms of the spatial distribution
of the penetration depth for the first and the sixth impacts along the
horizontal centerline when the impact energy is 20 kJ. Surprisingly,
the numerical results agree with the experimental measurements rather
well. It is likely due to the fact that the deformation of the gabion
cushion layer is less sensitive to the randomness caused by the small
number of particles, unlike the impact force and the transmitted force.
Fig. 12 shows that the edge of the crater spreads to a horizontal distance
of 1 m from the center, which is about 1.7 times of the boulder radius.
Also, the maximum penetration depth increases roughly from 0.35 m
to 0.5 m during the first and the sixth impacts.

All in all, despite some differences in the specific value of a certain
measurement, our DEM model can reproduce the general mechanical
response of a rock filled gabion under successive boulder impacts.

4. Parametric study of gabion cushion performance

It is well known that the overall performance of a granular assembly
8

is a collective behavior of inter-particle interactions at each individual i
contact. Up to now, it is still unclear how the contact properties
could possibly affect the cushion performance of rock-filled gabions
under successive boulder impacts. Besides, we are also interested in
the dynamic impact behavior as the impact energy changes, which
may alter the relative importance of friction, collision and particle
crushing. Therefore, the validated DEM model is applied in this section
to investigate the effects of contact properties (i.e. inter-particle friction
coefficient and damping ratio) and impact energy on the performance
of the gabion cushion layer.

4.1. Effects of contact properties

The effects of the inter-particle friction coefficient 𝜇 and the damp-
ing ratio 𝛽 on the cushion performance of rock-filled gabions are
investigated. Note that the inter-particle contact properties here refer to
the properties of the constituent balls. The same value for the damping
ratio in the calculation of normal and tangential contact force compo-
nents is adopted. Generally speaking, increasing the friction coefficient
𝜇 increases the amount of energy dissipation whenever two particles
slip at contact. Meanwhile, a higher friction coefficient also makes
slippage more difficult to occur (Staron and Hinch, 2006). Therefore,
the resultant effect (positive or negative) of increasing the friction co-
efficient on the energy dissipation rate of the whole granular assembly
becomes uncertain. On the other hand, increasing the damping ratio
(or equivalently decreasing the restitution coefficient) will lead to more
energy dissipation during collisions.

Fig. 13 presents the influence of the friction coefficient 𝜇 on the
eak impact force. The damping ratio 𝛽 is fixed to be 0.1 and the
mpact energy is kept constant at 20 kJ. For large values of friction
oefficient greater than 0.3, the influence on the peak impact force
uring the first and the sixth impacts is small. In contrast, as the friction
oefficient decreases from 0.3 to 0.1, the peak impact forces during the
irst and the sixth impacts reduce significantly by 37.2% and 44.6%,
espectively. When the damping ratio 𝛽 increases to 0.5 and 0.9, see the
ymbols filled by the gray and black colors in Fig. 13, the peak impact
orce during the first and the sixth impacts decreases by 14.2% and
.3%, respectively, to the utmost extent. It means that the influence of
he damping ratio on the peak impact force is relatively small. Note that
𝛽 value of 0.1 results in a restitution coefficient of about 0.73, which

s close to the property of quartz. Large 𝛽 values are used to illustrate
he largest possible influence of 𝛽 on the gabion cushion performance,
nd a large 𝛽 value is also associated with the large surface roughness
f particles (Li et al., 2020). Interestingly, it is observed that the peak
mpact force increases from 158 kN to 170 kN during the first and
he sixth impacts when the friction coefficient is 0.1 (i.e, only 7.8%

ncrease), while a higher friction coefficient greater than 0.3 results in
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Fig. 13. Effects of the inter-particle friction coefficient on the peak impact force during
the first and the sixth impacts. The impact energy is 20 kJ.

a minimum increase of 22.3%. It means that the function of the gabion
cushion layer is well maintained during successive boulder impacts
when the inter-particle friction coefficient is small.

The great influence of the friction coefficient on the peak impact
force suggests that inter-particle friction is likely the dominant mech-
anism during successive boulder impacts, which can be confirmed
by examining the relative importance of various sources of energy
dissipation. In DEM simulations, the kinetic energy of the boulder
𝐸𝑘𝑏 can be calculated based on its velocity 𝑣, i.e., 𝐸𝑘𝑏 = 0.5𝑚𝑣2.

he initial kinetic energy of the boulder 𝐸𝑘0 is the impact energy,
hich is also the total energy input to the whole system during each
oulder impact. Here we ignore the kinetic energy of the wire mesh
ue to its small mass (only 0.12% of the filling particles), then the
ifference between the kinetic energy of the whole system at any
oment and the boulder kinetic energy 𝐸𝑘𝑏 becomes the kinetic en-

rgy of the particles inside the gabion, which is denoted by 𝐸𝑘𝑝.
he total strain energy (𝐸𝑐 = 𝐸linear

𝑐 + 𝐸bond
𝑐 ) can be calculated

ased on the overlaps between contacting particles and the defor-
ations of the bonds, i.e., 𝐸linear

𝑐 = 0.5(|𝑭 𝑙
𝑛|

2∕𝑘𝑛 + |𝑭 𝑙
𝑡|
2∕𝑘𝑡) and

bond
𝑐 = 0.5

[

|�̄� 𝑛|
2∕(�̄�𝑛�̄�) + |�̄� 𝑡|

2∕(�̄�𝑡�̄�) + |�̄�𝑏|
2∕(�̄�𝑛𝐼) + |�̄� 𝑡|

2∕(�̄�𝑡𝐽 )
]

,
where 𝐸linear

𝑐 and 𝐸bond
𝑐 are the strain energies stored at the contacts

and in the bonds, respectively. The linear component of the normal and
tangential forces are denoted by 𝑭 𝑙

𝑛 and 𝑭 𝑙
𝑡. The bending and twisting

moments are denoted by 𝑴 𝑙
𝑛 and 𝑴 𝑙

𝑡, respectively. The symbol 𝐽 de-
notes the polar moment of inertia of the bond cross section. In PFC3D,
the cumulative energy dissipations due to friction (𝐸𝑠𝑙𝑖𝑝) and collision
(𝐸𝑑𝑎𝑚𝑝) are also tracked in an incremental manner, i.e., 𝛥𝐸𝑠𝑙𝑖𝑝 = −0.5𝑭 𝑡⋅
𝛿𝜇𝑡 and 𝛥𝐸𝑑𝑎𝑚𝑝 = −𝑭 𝑑 ⋅(�̇�𝛥𝑡), where 𝛿𝜇𝑡 is the slip displacement, 𝑭 𝑑 is the
damping component of the contact forces in Eqs. (2) and (3), �̇� is the
relative velocity at the contact and 𝛥𝑡 is the time step. In this study, it is
assumed that the energy loss due to the plastic deformation of the wire
mesh, see Section 2.3, is negligible. And with the assumption of the en-
ergy conservation of the whole granular system, the energy dissipation
due to particle crushing or breakage 𝐸𝑐𝑟𝑎𝑐𝑘 can be estimated as

𝐸𝑐𝑟𝑎𝑐𝑘 = 𝐸𝑘0 − 𝐸𝑘𝑏 − 𝐸𝑘𝑝 − 𝐸𝑐 − 𝐸𝑠𝑙𝑖𝑝 − 𝐸𝑑𝑎𝑚𝑝. (7)

Note that 𝐸𝑘𝑝, 𝐸𝑐 , 𝐸𝑠𝑙𝑖𝑝 and 𝐸𝑑𝑎𝑚𝑝 in Eq. (7) represent the net changes
to different forms of energy since the start of every impact event.

Fig. 14 compares the temporal evolution of different energies nor-
malized by 𝐸𝑘0, i.e., 20 kJ, during the impact processes for different
friction coefficients 𝜇 and damping ratios 𝛽. Let us first focus on the
case when 𝜇 = 0.3 and 𝛽 = 0.1 for the general description of energy
evolution, see Figs. 14(c) and 14(d), and the changes caused by varying
𝜇 and 𝛽 will be discussed later. During the first impact, the boulder
kinetic energy 𝐸𝑘𝑏 drops below 20% quickly within the first 0.05 s and
then gradually drops to zero after 0.1 s, see Fig. 14(c). It agrees with the
rapid increase and more gentle decrease of impact force, as shown in
9

Fig. 10. Almost all the boulder kinetic energy is dissipated by friction,
with the other energy dissipations maintained well below 4.5% during
the whole impact process. At the end of the first impact, the total energy
dissipation due to friction 𝐸𝑠𝑙𝑖𝑝 is as high as 90.2%. It is likely due to
the fact that the gabion cushion layer is initially in a relatively loose
state, allowing a high degree of particle rearrangement and thereby
more slippage at contacts, which is evidenced by the significant kinetic
energy of particles inside the gabion (𝐸𝑘𝑝 = 14.6%𝐸𝑘0 at maximum).

During the sixth impact, as shown in Fig. 14(d), the boulder kinetic
energy 𝐸𝑘𝑏 drops to zero at around 𝑡 = 0.06 s. The shorter impact
duration is directly associated with the larger impact force. In addition,
there is a noticeable increase of the strain energy 𝐸𝑐 , which reaches
a maximum value of 14.8% at around 𝑡 = 0.05 s. After that, the
strain energy 𝐸𝑐 is slowly released, transferring the energy back to
the boulder. As a result, the boulder bounces back with a finite small
kinetic energy (3.4% of 𝐸𝑘0), which is absent after the first impact. The
energy dissipations due to collision 𝐸𝑑𝑎𝑚𝑝 and particle cracking 𝐸𝑐𝑟𝑎𝑐𝑘
also increase to 5.3% and 6.3%, respectively, after the sixth impact.
In contrast, the kinetic energy of the particles inside the gabion 𝐸𝑘𝑝
quickly drops to zero and at the same time the energy dissipation due
to friction 𝐸𝑠𝑙𝑖𝑝 saturates at around 81.5%. During successive boulder
impacts, permanent plastic deformation gradually develops, forming a
crater that reduces the effective thickness of the gabion cushion layer,
as shown in Fig. 12. In the meantime, the crushed small fragments
can fill the voids between the large particles, which further densifies
the granular packing between the boulder and the rigid back wall (Su
et al., 2021). The outcome is that less particle rearrangement is allowed
and more energy is absorbed by collisions or the damping mechanism,
bringing more severe particle cracking.

When the friction coefficient 𝜇 reduces to 0.1, the total energy
dissipations due to friction 𝐸𝑠𝑙𝑖𝑝 after the first and the sixth impacts
decrease to 76.0% and 63.9%, respectively, as shown in Figs. 14(a) and
14(b). Compared to the first impact, the response of different energies
is delayed significantly during the sixth impact. For example, the peak
kinetic energy of particles inside the gabion 𝐸𝑘𝑝 takes place before 0.05
s during the first impact and the same quantity occurs after 0.075 s
during the sixth impact. It is mainly due to the formation of the crater
and the boulder impacts the gabion cushion layer at a later stage.
Also, the kinetic energy of particles inside the gabion 𝐸𝑘𝑝 increases
significantly compared to the case when a higher friction coefficient
𝜇 = 0.3 is adopted. It indicates that more particle rearrangements take
place and the concentrated impact force can be diffused among a larger
area, enhancing the overall cushion performance (Ng et al., 2016; Su
et al., 2019).

When 𝜇 = 0.3 and 𝛽 = 0.9, the energy dissipations due to friction
𝐸𝑠𝑙𝑖𝑝 after the first and the sixth impacts are 85.6% and 76.1%, respec-
tively, as shown in Figs. 14(e) and 14(f). These values are about 5%
less than the corresponding quantities when the damping ratio 𝛽 is as
small as 0.1. The energy dissipation due to collision 𝐸𝑑𝑎𝑚𝑝 is almost
doubled during successive boulder impacts when 𝛽 increases from 0.1
to 0.9. However, it only covers 9.7% and 13.4% after the first and the
sixth impacts, which are still much smaller than the energy dissipations
due to friction. Note that a damping ratio as high as 0.9 (i.e., close
to 0 restitution coefficient) is less realistic for the considered system,
the associated numerical results are to demonstrate the limited energy
dissipation due to the collision mechanism.

All in all, our DEM results clearly show that the dominant mecha-
nism governing the successive boulder impacts on rock-filled gabions
is inter-particle friction, instead of the more intuitionistic collision and
particle cracking. This result supports the idea of using simplified DEM
simulations by ignoring particle breakage (i.e., rigid spheres or clumps)
to a certain extent (Bertrand et al., 2005; Su et al., 2019; Su and
Choi, 2021; Nicot et al., 2007), as long as the frictional properties
of the particles are well calibrated. Meanwhile, particle cracking in
a granular system can induce force chain collapse and contribute to

particle rearrangement (Tsoungui et al., 1999; Zhang et al., 2017),
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Fig. 14. Temporal evolution of the boulder kinetic energy 𝐸𝑘𝑏, the kinetic energy of particles inside the gabion 𝐸𝑘𝑝, the strain energy stored at contacts and in parallel bonds
𝐸𝑐 , the energy dissipation due to friction or slippage 𝐸𝑠𝑙𝑖𝑝, the energy dissipation due to collision or damping 𝐸𝑑𝑎𝑚𝑝, and the energy dissipation due to particle cracking 𝐸𝑐𝑟𝑎𝑐𝑘,
normalized by the initial kinetic energy of the boulder 𝐸𝑘0, i.e., 20 kJ. (a, b) the first and sixth impacts with 𝜇 = 0.1 and 𝛽 = 0.1, (c, d) the first and sixth impacts with 𝜇 = 0.3
nd 𝛽 = 0.1, (e, f) the first and sixth impacts with 𝜇 = 0.3 and 𝛽 = 0.9.
ncreasing the capacity of the granular system to deform under impact,
nd thereby reducing the impact force. Thus, even if dissipation by
racking is negligible, its potential effect on the overall impact response
an still be significant.

.2. Effects of impact energy

To investigate the effects of impact energy, a larger initial boulder
elocity of 8.4 m/s is applied following the experiments (Ng et al.,
016). As a result, the impact energy increases from 20 kJ to 70 kJ.
he inter-particle friction coefficient 𝜇 and the damping ratio 𝛽 are kept
onstant at 0.3 and 0.1, respectively. Fig. 15 compares the two cases
ith different impact energies in terms of the peak impact force as the
umber of impacts increases. First of all, the peak impact force does
ot necessarily increase in a monotonic way during successive boulder
mpacts, probably due to the randomness caused by the limited number
f particles and the particle arrangement (i.e., the granular packing) as
entioned in Section 3. However, a general increasing trend with the
umber of impacts can be observed. More specifically, when the impact
nergy is 20 kJ, the peak impact force increases from 252 kN to 308 kN
fter six impacts, i.e., 22.3% of increase. When the impact energy is
0 kJ, the peak impact force increases from 351 kN to 728 kN, which
s more than doubled.

Fig. 16 compares the crater formation at different impact energies.
t a low level of impact energy (20 kJ), there is only a small defor-
ation of the gabion cushion layer taking place after the first impact,

ee Fig. 16(a), which agrees with the experimental observation (Ng
10

t al., 2016). Note that it is not necessarily associated with a slight
Fig. 15. Effects of the impact energy on the peak impact force during successive
boulder impacts. The friction coefficient 𝜇 and the damping ratio 𝛽 are set to be 0.3
and 0.1, respectively.

particle rearrangement during the impact process. Instead, the parti-
cle rearrangement is quite significant, as indicated by the noticeable
particle kinetic energy 𝐸𝑘𝑝 in Fig. 14(c). A few wire mesh segments
(in red) close to the center of the gabion cushion layer undergo plastic
deformations. After the third impact, as shown in Fig. 16(b), an obvious
crater is formed and the number of wire mesh segments with plastic
deformations greatly increases. Also, local failure of the wire mesh
can be observed, forming large openings through which the particles
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Fig. 16. Crater formation during successive boulder impacts. (a–c) craters after first, third and sixth impacts when the impact energy is 20 kJ, (d–f) craters after first, third and
sixth impacts when the impact energy is 70 kJ. In each subplot, the balls are painted with the same color if they belong to the same particle or fragment on the left image and
painted according to the displacement (blue to red as the displacement increases from 0 to 0.5 m) on the right image. The friction coefficient 𝜇 and the damping ratio 𝛽 are set
to be 0.3 and 0.1, respectively.
can pass. After the sixth impact, as shown in Fig. 16(c), the crater at
the center becomes even larger. Almost all the wire mesh segments
close to the center are in the softening state. The openings caused by
the damage of the wire mesh segments further enlarge. In addition,
significant particle crushing occurs and some small fragments fly out
of the gabion cushion layer, which again qualitatively agrees with the
experimental observation (Ng et al., 2016). In experiments, the metal
wires in the impacted area could be cut due to the direct compression
between the boulder and the filling particles in the direction perpen-
dicular to the wire (Lambert et al., 2020). This wire cutting mechanism
is not accounted for in the current DEM model, which requires further
improvements to the modeling technique for breakable wire meshes.

When the impact energy increases to 70 kJ, a noticeable crater is
formed after the very first impact, which is accompanied with large
plastic deformations and local failures of the wire mesh, as shown in
Fig. 16(d). After the third impact, the size of the crater is already larger
than or at least comparable to that after six impacts at 20 kJ, see
Figs. 16(c) and 16(e). The sixth impact at 70 kJ creates a large hole of
the wire mesh close to the center, and more significant particle crushing
is observed, as shown in Fig. 16(f). At this point, the gabion cushion
layer is greatly damaged and repairing of the wire mesh basket becomes
necessary if it is in experiments or in the field.
11
To gain a better understanding of the impact dynamics at 70 kJ, the
temporal evolution of various normalized energies, the same as Fig. 14,
is presented in Fig. 17. During the first impact, as shown in Fig. 17(a),
the boulder kinetic energy 𝐸𝑘𝑏 gradually decreases in a nearly linear
pattern. Before 𝑡 = 0.05 s, about 12.4% of the boulder kinetic energy
is transferred to the kinetic energy of the particles inside the gabion
𝐸𝑘𝑝. The strain energy 𝐸𝑐 and the energy dissipations due to collision
𝐸𝑑𝑎𝑚𝑝 or cracking 𝐸𝑐𝑟𝑎𝑐𝑘 only increase slightly. Almost all the boulder
kinetic energy is dissipated via inter-particle friction 𝐸𝑠𝑙𝑖𝑝. At the end
of the first impact, the total energy dissipation due to friction is 87.6%,
which is rather similar to the value (86%) predicted by the model
from Su et al. (2019) in which particle crushing was ignored and a
Hertz–Mindlin contact model was adopted. The final energy dissipation
due to cracking 𝐸𝑐𝑟𝑎𝑐𝑘 is larger than that due to collision 𝐸𝑑𝑎𝑚𝑝, which
is different from the results when the impact energy is 20 kJ and is
likely due to the more severe particle cracking, as shown in Fig. 16(d).

The energy evolution changes quite significantly during the sixth
impact, as shown in Fig. 17(b). Most of the boulder kinetic energy 𝐸𝑘𝑏
is lost within a short period from 0.025 s to 0.05 s. The sudden drop
of 𝐸𝑘𝑏 indicates large rate of momentum exchange, which is associated
with the largely amplified impact force in Fig. 15. The rapid decrease
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Fig. 17. Temporal evolution of various energies (see Fig. 14) normalized by the initial kinetic energy of the boulder 𝐸𝑘0, i.e., 70 kJ, during (a) the first impact and (b) the sixth
impact. The friction coefficient 𝜇 and the damping ratio 𝛽 are set to be 0.3 and 0.1, respectively.
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of the particle kinetic energy 𝐸𝑘𝑝 after reaching the peak also indicates
ess particle rearrangements. As a result, the total energy dissipation
ue to friction 𝐸𝑠𝑙𝑖𝑝 reduces from 87.6% to 82.6%. In the meantime,
he total energy dissipation due to collision 𝐸𝑑𝑎𝑚𝑝 increases from 4.6%

to 11.4%.
Comparing the cases when the impact energy is 20 kJ and 70 kJ,

we can observe a large difference regarding the strain energy stored at
the contacts and in the bonds (𝐸𝑐). When the impact energy increases,
he energy dissipation due to collision also increases. As a result, the
aximum strain energy 𝐸𝑐 reduces from 14.8% to 7.6%, which is

oughly halved. It is known that the strain energy is recoverable, and
an be transferred back to the kinetic energy of the boulder, resulting
n a bounce-back motion after the impact at 20 kJ, see Fig. 14(d).
owever, such a bounce-back behavior is absent when the impact
nergy increases to 70 kJ. In real debris flow events and flume tests
here multiple boulders are present and impact the barrier succes-

ively, the bounce-back behavior of the boulders may affect the impact
oad significantly, just like the reflection waves (Ng et al., 2021), which
hould be properly considered in the design practice.

. Concluding remarks

In this paper, we present discrete element simulations of rock-filled
abions under successive boulder impacts. A unique DEM model con-
isting of irregular crushable filling particles and a flexible wire mesh is
stablished. The objective is to explicitly capture the irreversible plastic
eformation of the gabion cushion layer and the potential damage of
he wire mesh, which plays a vital role in the dynamic responses when
ultiple boulder impacts are considered. With the precise control of the

nput parameters (i.e., the inter-particle contact properties and the im-
act energy) and the additional information that can be extracted from
EM simulations, we are able to identify the governing mechanism
uring the impact processes at different energy levels.

The wire-node approach, combined with a soft bond contact model,
s applied to simulate the wire mesh. To validate the model, a net
unching test is simulated and the numerical result of force–displac-
ment relationship is compared to the experimental measurement. A
esh sensitivity analysis is first carried out and it is found that the

ommonly adopted resolution with balls installed just at the nodes of
he wire mesh produces a slightly stiffer response. The small influence
f mesh resolution on the mechanical response of wire strands indicates
hat tension is the dominant loading pattern during the punching test
nd bending is a negligible mechanism. Also, compared to the parallel
ond model, the soft bond model can better capture the mechanical
esponses of the wire mesh panel in terms of the reduced out-of-plane
tiffness before failure.

To examine the performance of the DEM model for the rock-filled
abion, we have performed a one-to-one numerical simulation of the
arge-scale pendulum impact test carried out by Ng et al. (2016). The
umerical results are compared to the experimental data regarding
12
he boulder impact force, the transmitted load and the deformation
f the gabion cushion layer after successive boulder impacts. A close
greement is observed, with a better match for the deformation. The
arger differences between the numerical and experimental data for the
orces are attributed to the high variability in measurements due to the
imited number of particles and the small measuring area.

The validated DEM model is further applied to investigate the
ffects of contact properties and the impact energy on the cushion
erformance of rock-filled gabions. When the friction coefficient 𝜇 is
ess than 0.3, the peak impact force increases as 𝜇 increases. However,

this positive relationship disappears when 𝜇 is larger than 0.3 and the
effect of 𝜇 on the peak impact force becomes minor. Also, when 𝜇 is
small (e.g., 0.1), the peak impact force during the sixth impact is only
7.8% larger than the value during the first impact, while a minimum
increase of 22.3% is observed when 𝜇 is greater than 0.3. It means
the cushion performance of the gabion filled with more frictional rock
fragments deteriorates more quickly under successive boulder impacts.
A close examination of the energy evolution suggests that less frictional
particles have significant rearrangements even after multiple impacts,
further reducing the impact force.

After six impacts, the peak impact force increases by 22.3% at
20 kJ but the same quantity is more than doubled at 70 kJ. The
largely amplified force after multiple impacts at a higher energy level
is associated with the reduced particle rearrangement and thereby a
stiffer response. Furthermore, a bounce-back motion of the boulder
is observed only when the impact energy is low, which may play
a vital role in estimating the successive impact loads from multiple
boulders in real debris flow events. Note that the impact energy is
a function of both the landslide mobility and the flow composition,
such as the boulder size. Therefore, it becomes rather important to
combine techniques, including numerical simulation, case study and
site investigation, for a better prediction of the impact energy so that
the design of rock-filled gabions can be optimized.
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