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A B S T R A C T

The development of isotropic nonlinear viscoelastic solid constitutive models constitutes an integral part of solid 
mechanics. In this work, a general constitutive behavior framework for nonlinear viscoelastic solid materials is 
developed via systematic stress relaxation and creep experiments on polypropylene (PP). Results indicates that 
the infinite hyperelastic-plastic constitutive behavior serves as the sole physical boundary for evaluating struc-
tural delayed stability. Thus, the threshold stress between low-stress creep stability and high-stress creep fracture 
of nonlinear viscoelastic solid is determined. It is revealed that the nonlinear viscoelastic constitutive behavior 
represents a convergence process from instantaneous hyperelasticity to infinite hyperelasticity. To fully char-
acterize their relaxation and creep viscoelastic properties, we propose a novel architecture based on series- 
parallel combinations of hyperelastic springs and dampers. By integrating Maxwell and Kelvin linear visco-
elastic theories with the incompressible Mooney-Rivlin hyperelastic model, we develop incompressible nonlinear 
viscoelastic stress relaxation and creep constitutive models. The developed models exhibit excellent predictive 
performance. Boltzmann’s equations are derived based on the Boltzmann nonlinear superposition principle, 
revealing the constitutive relations for nonlinear solids. These equations establish a connection between special 
and generalized relaxation / creep constitutive behaviors. This research focuses on small deformations in 
incompressible solids, laying the groundwork for future investigations into large deformations in compressible 
solids.

1. Introduction

Computational solid mechanics, composed of numerical algorithms 
(predominantly the finite element method) and solid constitutive 
models, plays a pivotal role in engineering applications. This discipline 
is traditionally categorized into four major branches: linear elastic 
solids, linear viscoelastic solids, nonlinear elastic solids, and nonlinear 
viscoelastic solids.

The constitutive framework for linear elastic solids is formulated 
through the generalized Hooke’s law, pioneered by Hooke and system-
atically developed by Cauchy, Young, Poisson, and subsequent re-
searchers. This model finds extensive engineering utility in describing 
materials such as room-temperature metals [1].

The theoretical framework of linear viscoelastic solids was primarily 
developed during the 19th century, forming a mature system established 
by Maxwell, Kelvin, Boltzmann, and their contemporaries. The main 
contributions include Maxwell [2] determining the linear viscoelastic 
stress relaxation behavior (relaxation stress and constant strain are a 
linear constitutive relation) and establishing the Maxwell fluid model. 

Kelvin characterized the linear viscoelastic creep response (creep strain 
and constant stress are a linear constitutive relation) and proposed the 
Kelvin solid model. Boltzmann [3] introduced the linear superposition 
principle, deriving constitutive equations that connect special (Fig. 1a) 
and generalized (Fig. 1b) static responses in linear solids [4]. These 
equations mathematically formalize the superposition law governing 
single-physical-field interactions in such materials. This well-established 
theory finds extensive engineering applications in modeling 
high-temperature metallic materials [1,5].

The systematic development of nonlinear elastic (hyperelastic) 
constitutive models occurred primarily during the 20th century. Key 
hyperelastic models include: Neo-Hookean [6], Mooney [7] -Rivlin [8], 
Blatz-Ko [9], Varga [10], Veronda-Westmann [11], Odgen [12], 
Arruda-Boyce [13], Yeoh [14], Gent [15] models, etc. Among these, The 
Mooney-Rivlin model based on strain tensor invariants and the Odgen 
model based on principal stretches are the main representatives. These 
models are widely adopted for engineering applications involving 
rubber-like materials [1].

The theoretical framework for nonlinear viscoelastic solids lagged 

* Correspondence
E-mail address: yaoqhe@mail.sysu.edu.cn (Q. Yao). 

Contents lists available at ScienceDirect

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci

https://doi.org/10.1016/j.ijmecsci.2025.110330
Received 15 January 2025; Received in revised form 25 March 2025; Accepted 29 April 2025  

International Journal of Mechanical Sciences 296 (2025) 110330 

Available online 29 April 2025 
0020-7403/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:yaoqhe@mail.sysu.edu.cn
www.sciencedirect.com/science/journal/00207403
https://www.elsevier.com/locate/ijmecsci
https://doi.org/10.1016/j.ijmecsci.2025.110330
https://doi.org/10.1016/j.ijmecsci.2025.110330
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2025.110330&domain=pdf


behind, with systematic studies emerging more recently. Numerous 
experimental results indicate that the creep strain of nonlinear visco-
elastic solid materials exhibits a nonlinear relation with constant stress. 
Extensive experimental evidence reveals the stress-dependent creep 
behavior, which is completely different from the linear viscoelastic 
constitutive relation. Biomaterials (e.g., periodontal ligament [16], 
cartilage [17], trabecular bone [18]) show decreasing creep compliance 
with increasing stress. Polymeric materials (e.g., PP [19]) exhibit 
increasing creep compliance under elevated stress. Polymeric materials, 
as typical nonlinear viscoelastic solid materials, are often used as 
matrices for composite materials. Widely used in industries such as 
water, oil and gas, aerospace, and chemical [20]. Notable contributions 
include Rafiee et al. [21–23], who developed multi-stage creep protocols 
to characterize long-term (over one year) nonlinear creep in composite 
materials. Zhou et al. [24] introduced the "anchored" concept, defining 
nonlinear viscoelastic behavior through relaxation modulus spectrum G 
(ε, t) and creep compliance spectrum J(σ, t). Despite recent advance-
ments, characterization of structural creep stability in nonlinear visco-
elastic solids remains qualitative, with low-stress creep maintaining 
stability whereas high-stress creep induces fracture. The threshold stress 
between low stress creep stability and high stress creep fracture cannot 
be determined. The unresolved challenge lies in determining the critical 
stress threshold separating these regimes, fundamentally due to the lack 
of predictive constitutive behavior frameworks.

The earliest research on nonlinear theory of viscoelasticity was 
proposed by Rivlin and Ericksen [25] for the viscoelastic theory of 
isotropic solids. Early investigations into finite viscoelasticity [26–28] 
were primarily based on memory decay theories [29–32]. Power-law 
functions were adopted in some studies to model nonlinear visco-
elastic creep behavior [33–35]. However, mathematical convergence 
issues inherent to power-law representations of creep strain have limited 
their theoretical rigor. Currently, no universally accepted constitutive 
models exists for describing both relaxation and creep phenomena in 
nonlinear viscoelastic solids.

The understanding of nonlinear solid responses to generalized static 
loads remains incomplete. Key contributions include: Green and Rivlin 
[29] developed numerical approximation equations extending Boltz-
mann’s linear superposition principle to nonlinear solids. Ward et al. 
[36] proposed computational methods for multi-stage step loadings. 
Fung [37,38] introduced the quasi-linear viscoelastic (QLV) theory, 
widely applied to biological soft tissues. Schapery [39] formulated a 
nonlinear thermo-viscoelastic theory within irreversible thermody-
namics. Zhou et al. [24] advanced the Boltzmann nonlinear super-
position principle, postulating nonlinear constitutive relations for 
single-physical-field interactions in solids. Notably, experimental vali-
dation of these nonlinear superposition relations remains lacking. 
Furthermore, no unified analytical equations exist to bridge the gap 
between special (Fig. 1a) and generalized (Fig. 1b) static responses in 
nonlinear solids, representing a significant theoretical deficit.

This work explores the nonlinear viscoelastic constitutive behavior 
of typical nonlinear viscoelastic solid material PP through a series of 
experiments (quasi-static tensile test, stress relaxation test, and creep 

test), and establishes a general constitutive behavior framework for 
nonlinear viscoelastic solids. We established Maxwell-Mooney-Rivlin 
fluid relaxation and Kelvin-Mooney-Rivlin solid creep nonlinear visco-
elastic constitutive models. Based on the Boltzmann nonlinear super-
position principle, the Boltzmann’s equations is derived, which reveals 
the single physical field superposition constitutive relation of nonlinear 
solid materials.

2. Materials and methods

Section 2 introduces the experimental setup, including material 
preparation and experimental methods. To validate the proposed gen-
eral constitutive behavior framework, nonlinear viscoelastic stress 
relaxation and creep models, Boltzmann nonlinear superposition re-
lations, and corresponding equations. A series of static, stress relaxation, 
creep (recovery), and generalized relaxation / creep tensile experiments 
were performed on representative isotropic polymeric samples.

2.1. Preparation of specimens

PP [19,36] is chosen as the model material due to its wide range of 
applications and excellent mechanical properties. The sample measures 
90mm in length, 10mm in width, and 4mm in thickness. The experi-
mental instrument adopts an Division of ITW Limited (UK) 10KN ma-
terial testing machine with a model of Instron/68TM-10. The 
displacement resolution of the instrument is 0.001mm. The force reso-
lution is 0.001N, and the accuracy meets the experimental requirements 
(Fig. 2).

2.2. Experiment

Room-temperature experiments were performed using an Instron/ 
68TM-10 universal testing machine, including strain-controlled static 
tensile tests, stress relaxation tests, and stress-controlled creep tests. A 
total of six test categories were conducted: 1 static tensile experiment 
(S1), 7 stress relaxation experiments (R2–R8), 5 creep experiments 
(C9–C13), 1 creep-recovery experiment (CR14), 1 generalized relaxa-
tion experiment (GR15), and 1 generalized creep experiment (GC16). 
The maximum quasi-static loading rate of 10− 3/s was employed to 
approximate theoretical step loading and minimize dynamic impacts 
and thermal effects. Prior to formal testing, a zero-stress creep protocol 
was applied to eliminate initial stresses. For stress relaxation tests, 
constant strains of 0.50 %, 0.75 %, 1.0 %, 2.0 %, 3.0 %, 4.0 %, and 5.0 % 
were imposed. Creep tests utilized constant stresses of 4 MPa, 6 MPa, 8 
MPa, 15 MPa, and 20 MPa, with the creep-recovery experiment con-
ducted at 10 MPa.

3. Experimental result

Section 3 introduces the key experimental results of PP. These 
include the special and generalized stress relaxation constitutive 
behavior, as well as the special and generalized creep constitutive 
behavior. It also defines the yield and fracture strength of nonlinear 
viscoelastic solids.

3.1. Stress relaxation constitutive behavior

The stress relaxation constitutive behavior was studied at constant 
strain levels of 0.50 %, 0.75 %, 1.0 %, 2.0 %, 3.0 %, 4.0 %, and 5.0 % at 
room temperature (Fig. 3). The instantaneous hyperelastic-plastic 
constitutive behavior occurs under step loading (Fig. 3a), and the 
instantaneous hyperelastic-plastic constitutive behavior determines the 
starting point of relaxation stress. The relaxation stress exhibits expo-
nential decay and approaches constant stress after an infinite duration 
(Fig. 3b). During the relaxation process, the time-dependent viscous 
effect gradually disappears and converges to an infinite hyperelastic- 

Fig. 1. The superposition of single physical fields in solid materials. (a). Special 
statics (Relaxation and creep loads). (b). Generalized statics (Generalized 
relaxation or creep loads).
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plastic boundary (Fig. 3c). Essentially, step loading stores hyperelastic 
strain energy. Under constant strain, the stress relaxation is only 
phenomenological and essentially viscous consumption of hyperelastic 
strain energy. From another perspective, stress relaxation constitutive 
behavior is the process of convergence from quasi-static unstable 
instantaneous hyperelastic-plastic boundary to static stable infinite 
hyperelastic-plastic boundary (Fig. 3d).

3.2. Creep constitutive behavior

The creep constitutive behavior was studied at constant stress levels 
of 4MPa, 6MPa, 8MPa, 15MPa, and 20MPa at room temperature (Fig. 4). 
An instantaneous hyperelastic-plastic response occurs under step 
loading (Fig. 4a), determining the initial point of creep deformation. The 
creep strain increases exponentially and approaches a constant value 
after an infinite period (Fig. 4b). During the creep process, the time- 
dependent viscous effect gradually disappears and converges to an 
infinite hyperelastic-plastic boundary (Fig. 4c). The essence of creep is 
the convergence from quasi-static unstable instantaneous hyperelastic- 
plastic boundary to statically stable infinite hyperelastic-plastic 
boundary (Fig. 4d). However, when the creep constant stress is greater 
than the infinite hyperelastic-plastic boundary, the creep strain cannot 
converge to the infinite hyperelastic-plastic boundary. The time- 
dependent viscous effect has always existed, and experimental results 
have demonstrated the Newtonian fluid characteristics (Fig. 4e). It has 
been proven from the perspective of creep that the constitutive behavior 
of infinite hyperelastic-plastic boundaries is the key to determining 
creep stability and fracture failure, and this physical stability is unique.

3.3. Yield strain and engineering allowable stress

The creep recovery constitutive behavior was studied at room tem-
perature and a constant stress level of 10 MPa (Fig. 4f). After the creep 
strain of PP reached 1.5 %, it recovered about 1.3 % of the viscoelastic 
creep strain and retained about 0.2 % of the viscoplastic creep strain. 
Experiments have shown that the yield strain of PP is approximately 1.3 
% (Fig. 3d). The constitutive behavior is considered viscoelastic when 
the strain is less than the yield strain, and viscoplastic when the strain is 
greater than the yield strain. The yield strength of PP is about 8MPa, and 
the fracture strength is about 13MPa (Fig. 3d). The creep constant stress 

of PP is between 0-8MPa, which is viscoelastic creep, and the material 
remains stable (Fig. 4b). The creep constant stress of PP is between 8- 
13MPa, which is viscoelastic and viscoplastic creep, and the material 
remains stable. The creep constant stress of PP is greater than 13MPa, 
which is viscoelastic and viscoplastic creep. The material is unstable and 
leads to fracture (Fig. 4e).

3.4. Generalized nonlinear constitutive behavior

The relaxation stress and constant strain of linear viscoelastic ma-
terials have a linear constitutive relation, with the ratio being the 
relaxation modulus. The creep strain and constant stress have a linear 
constitutive relation, and the ratio is the creep compliance. PP exhibits 
significant nonlinear viscoelastic solid material properties. The relaxa-
tion modulus decreases with increasing constant strain (Fig. 5a), while 
the creep compliance increases with increasing constant stress (Fig. 5b). 
The generalized nonlinear relaxation test procedure is as follows: Step 
loading to 0.5 % for 10000s without change, then step loading to 0.75 % 
for 10000s without change, and then step loading to 1.0 % for 10000s 
without change(Fig. 6a). The generalized relaxation constitutive 
response of PP is shown in Fig. 6b. The generalized nonlinear creep test 
procedure is as follows: Step loading to 4MPa for 10000s without 
change, then step loading to 6MPa for 10000s without change, and then 
step loading to 8MPa for 10000s without change (Fig. 6c). The gener-
alized creep constitutive response of PP is shown in Fig. 6d.

4. Constitutive behavior and models

The steps and methods of the present research are summarized in the 
scheme of Fig. 7. A brief description of each step is provided in the 
following. As is well known, the evolution of solid mechanics for linear 
elastic solids (Fig. 8a), linear viscoelastic solids (Fig. 8b), and nonlinear 
elastic solids (Fig. 8c) has historically been guided by experimentally 
observed objective constitutive behaviors. Subsequently, mathematical 
constitutive modeling is employed to accurately describe these behav-
iors, with numerical simulations enabling large-scale engineering ap-
plications. However, incomplete understanding of nonlinear viscoelastic 
solid behavior has resulted in the absence of a universally accepted 
theoretical framework for practical engineering implementation. 
Adhering to the classical methodology, we develop a unified constitutive 

Fig. 2. The tensile test device of the polypropylene.
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framework for nonlinear viscoelastic solids based on PP experimental 
results. In addition, nonlinear viscoelastic stress relaxation and creep 
models are proposed, and finally, the Boltzmann superposition principle 
and its corresponding equations are derived to characterize the 
nonlinear superposition constitutive relations.

4.1. General constitutive behavior framework

Zhou et al. [5] experimentally demonstrated that linear 
elastic-plastic zones in metallic materials at room temperature (Fig. 8a) 
evolve into linear viscoelastic and viscoplastic zones at elevated tem-
peratures (Fig. 8b). Temperature elevation is identified as the critical 
factor inducing time-dependent viscous effects in solid materials. 
Notably, nonlinear elastic solids such as rubber exhibit nonlinear 
viscoelastic behavior at high temperatures, while polymeric materials 
display nonlinear viscoelastic characteristics even at room temperature. 
Significantly, viscous effects in polymers can be suppressed by reducing 
temperature, indicating that time-independent elastic-plastic behavior 
(Fig. 8a & 8c) represents the limiting case of time-dependent viscoe-
lastic-viscoplastic behavior (Fig. 8b & 8d). These two zones form a 
complementary relationship, interconvertible through temperature 
variations.

Step loading [16] is considered as a static load in an infinitesimal 

time. In the instantaneous state, ‘time’ does not exist as a mathematical 
variable, and from a physical perspective, the viscous mechanics 
behavior requires ‘time’ to characterize. Nonlinear viscoelastic solid 
materials exhibit instantaneous hyperelastic-plastic constitutive 
behavior only under step loading (t=0+). After step loading, 
time-dependent viscous effects lead to the emergence of viscoelastic and 
viscoplastic constitutive behaviors. After infinite time, the constitutive 
behavior converges to the statically stable boundary of infinite 
hyperelastic-plasticity. Zhou et al. [5] experimentally and theoretically 
demonstrated the absence of “viscoplastic stress relaxation” phenome-
non, thereby establishing that the yield behavior of solid materials is 
solely strain-dependent, independent of stress (Fig. 8b).

Key boundary conditions defining the nonlinear viscoelastic zone 
include: 

• Instantaneous hyperelastic behavior
• Infinite hyperelastic behavior
• Yield strain behavior

For the viscoplastic zone, critical boundaries are: 

• Instantaneous plastic behavior
• Infinite plastic behavior

Fig. 3. The stress relaxation constitutive behavior of polypropylene. (a). Instantaneous hyperelastic-plastic constitutive behavior under step loading. The instan-
taneous hyperelastic-plastic constitutive behavior in Fig. 3a determines the starting point of the relaxation stress in Fig. 3b. (b). Stress relaxation occurs at constant 
strains of 0.50 %, 0.75 %, 1.0 %, 2.0 %, 3.0 %, 4.0 %, and 5.0 %. The stress of the relaxation stress curve in Fig. 3b converges to the infinite hyperelastic-plastic 
constitutive behavior in Fig. 3c. In linear constitutive theory, the relation between relaxation stress and constant strain is linear. The relaxation stress and con-
stant strain of polypropylene exhibit a clear nonlinear constitutive relation. (c). The infinite hyperelastic-plastic constitutive behavior. (d). The instantaneous 
hyperelastic-plastic constitutive behavior undergoes stress relaxation and converges to infinite hyperelastic-plastic constitutive behavior.
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Fig. 4. The creep constitutive behavior of polypropylene. (a). Instantaneous hyperelastic-plastic constitutive behavior under step loading. The instantaneous 
hyperelastic-plastic in Fig. 4a determines the starting point of the creep strain in Fig. 4b. (b). Creep strain occurs at constant stress of 4MPa, 6MPa, and 8MPa. The 
strain of the creep strain in Fig. 4b converges to the infinite linear-elastic plastic constitutive behavior in Fig. 4c. In linear constitutive theory, the relationship 
between creep strain and constant stress is linear. The creep strain and constant stress of polypropylene exhibit a clear nonlinear constitutive relation. (c). The creep 
strain converges to an infinite hyperelastic-plastic constitutive behavior. (d). The instantaneous hyperelastic-plastic constitutive behavior undergoes creep strain and 
converges to infinite hyperelastic-plastic constitutive behavior. (e). Creep strain occurs at constant stress of 15MPa and 20MPa. The creep fracture constitutive 
behavior occurs. (f). Creep recovery experiment of polypropylene at 10MPa.
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Fig. 5. Nonlinear viscoelastic relaxation modulus spectrum and creep compliance spectrum. (a). In a linear constitutive theory, the relaxation modulus is strain- 
independent. The relaxation modulus of polypropylene decreases with increasing constant strain. The relaxation modulus of nonlinear viscoelastic solids is 
strain-dependent. (b). In a linear constitutive theory, the creep compliance is stress-independent. The creep compliance of polypropylene increases with the increase 
of constant stress. The creep compliance of nonlinear viscoelastic solids is stress-dependent.

Fig. 6. Generalized relaxation and creep constitutive response of polypropylene. (a). Generalized relaxation experiment of polypropylene. (b). Generalized relaxation 
behavior response of polypropylene. (c). Generalized creep experiment of polypropylene. (d). Generalized creep behavior response of polypropylene.
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• Yield strain behavior
• Fracture behavior

Therefore, a general constitutive behavior framework for nonlinear 
viscoelastic solid materials is established (Fig. 8d).

4.2. Relaxation and creep constitutive behavior

The characteristic of linear viscoelastic stress relaxation and creep 

behavior is the process of convergence from instantaneous linear elastic 
constitutive behavior (E0) to infinite linear elastic constitutive behavior 
(E∞) (Fig. 9a) [5]. However, for the relaxation and creep constitutive 
behavior of nonlinear viscoelastic solids, the characteristic is the process 
of convergence from instantaneous hyperelastic constitutive behavior 
(H0) to infinite hyperelastic constitutive behavior (H∞) (Fig. 9b).

Fig. 7. The flowchart of the modeling method.

Fig. 8. General constitutive behavior framework of isotropic solid materials. (a). Linear elastic solids (Room-temperature metal materials). (b). Linear viscoelastic 
solids (High-temperature metal materials). (c). Nonlinear elastic solids or hyperelastic solids (Room-temperature rubber materials). (d). The contribution of this 
work. Nonlinear viscoelastic solids (Room-temperature polymer materials).
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4.3. Constitutive modeling

Considering that solid materials exhibit nonlinear damping behavior 
under dynamic loading conditions [40], while nonlinear damping 
behavior generally does not occur under static loading conditions. 
Modeling the nonlinear viscoelastic stress relaxation and creep consti-

tutive behavior. The new constitutive model consists of a Newtonian 
fluid damper and a hyperelastic spring [24].

The constitutive model (Fig. 10) is a fundamental underlying logic in 
modeling, providing a closed convergent computational domain. Based 
on this underlying logic, many constitutive equations can be derived. In 
this article, the hyperelastic spring is characterized using an incom-
pressible 2-parameter Mooney-Rivlin hyperelastic model. The strain 
energy function is shown in Eq. (1a) (Appendix A): 

W = C10(I1 − 3) + C01(I2 − 3). (1a) 

Here, C10 and C01 are model parameters, with units of MPa. I1 and I2 
are the first and second invariants of the strain tensor. The Poisson’s 

ratio of incompressible materials is μ = 0.5. The relation between the 
three principal strains is ε11 + ε22 + ε33 = 0. The strain energy W is used 
to calculate the partial derivative of the strain tensor to obtain the stress 
tensor, which is written in the matrix form of the stress tensor and strain 
tensor as shown in Eq. (1b):  

Write it in tensor form: 

σij(ε, t) = Cijkl⋅εkl. (1c) 

Here, σij, εkl are the stress tensor and strain tensor, respectively. Cijkl 
hyperelastic matrix. Rewrite matrix Eq. (1b) as a stress tensor to 
represent the strain tensor, as shown in Eq. (1d): 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11
ε22
ε33
ε23
ε31
ε12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
0
0
0
0
0

0
A2
0
0
0
0

0
0
A3
0
0
0

0

0

0
1

− 2C01

0

0

0

0

0

0
1

− 2C01

0

0

0

0

0

0
1

− 2C01

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ11
σ22
σ33
σ23
σ31
σ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1d) 

Here, A1 =
C10±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C10

2 − 4C01 ⋅σ11

√

2C01 ⋅σ11
, A2 =

C10±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C10

2 − 4C01 ⋅σ22

√

2C01 ⋅σ22
, A3 =

C10±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C10

2 − 4C01 ⋅σ33

√

2C01 ⋅σ33
. Their dimension is MPa− 1, and Eq. (1d) is written in 

tensor Eq. (1e): 

εij(σ, t) = Dijkl⋅σkl. (1e) 

The damper is characterized by Newton’s law of viscosity. As shown 
in tensor Eq. (2): 

Fig. 9. Relaxation and creep constitutive behavior. (a). Linear viscoelastic stress relaxation and creep constitutive behavior. (b). The contribution of this work. 

Nonlinear viscoelastic stress relaxation and creep constitutive behavior. 
[
σinf

s

]
and 

[
σinf

b

]
are the yield and fracture strength of nonlinear viscoelastic solid materials.

Fig. 10. Nonlinear viscoelastic models. (a). Maxwell-Mooney-Rivlin nonlinear 
viscoelastic fluid model. (b). Kelvin-Mooney-Rivlin nonlinear viscoelastic 
solid model.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ11
σ22
σ33
σ23
σ31
σ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C10 − C01⋅ε11
0
0
0
0
0

0
C10 − C01⋅ε22

0
0
0
0

0
0

C10 − C01⋅ε33
0
0
0

0
0
0

− 2C01
0
0

0
0
0
0

− 2C01
0

0
0
0
0
0

− 2C01

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11
ε22
ε33
ε23
ε31
ε12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1b) 
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σij = ηijkl⋅ε⋅
kl = ηijkl⋅

dεkl

dt
. (2a) 

Where ηijkl is the viscosity coefficient, measured in MPa ⋅ s. Write in 
matrix form: 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ11
σ22
σ33
σ23
σ31
σ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

η
0
0
0
0
0

0
η
0
0
0
0

0
0
η
0
0
0

0
0
0
η
0
0

0
0
0
0
η
0

0
0
0
0
0
η

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε⋅
11

ε⋅
22

ε⋅
33

ε⋅
23

ε⋅
31

ε⋅
12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2b) 

Here, σij, εkl, ε⋅
kl are the stress tensor, strain tensor, and strain rate 

tensor, respectively. ηijkl is the viscosity matrix.

4.3.1. Nonlinear viscoelastic relaxation constitutive model
In 1867, Maxwell proposed the Maxwell linear viscoelastic fluid 

model, which consists of a linear elastic spring and a linear viscous 
damper connected in series. Considering the general nonlinear visco-
elastic relaxation behavior characteristics (Fig. 9a), we propose the 
Maxwell-Mooney-Rivlin nonlinear viscoelastic fluid model, which con-
sists of a hyperelastic spring (Hr

1) and a damper (ηr
1) connected in series 

(Fig. 10a). The constitutive equation derivation of Maxwell-Mooney- 
Rivlin fluid model is shown in Eq. (3): 

dεklt
dt

=
1

Cijkl

∂σij(ε, t)
∂t

+
σij(ε, t)

ηijkl
. (3) 

The new constitutive Eq. (4) is obtained by organizing the above 
equation: 

∂σij(ε, t)
∂t

+
Cijkl

ηijkl
σij(ε, t) = Cijkl

dεklt
dt

. (4) 

The Maxwell-Mooney-Rivlin model is subjected to a relaxation load 
of εklt = εklΔ(t), where εkl is constant strain and Δ(t) is the unit step 
function. The constitutive equation of the Maxwell-Mooney-Rivlin 
model is transformed into Eq. (5): 

∂σij(ε, t)
∂t

+
Cijkl

ηijkl
σij(ε, t) = 0. (5) 

Solving the tensor algebraic differential equation yields its specific 
solution, and the relaxation stress σij(ε,t) of the Maxwell-Mooney-Rivlin 
nonlinear viscoelastic fluid model is Eq. (6): 

σij(ε, t) = Cijkl⋅εkl⋅e−
t
τ. (6) 

The relaxation time τ is as shown in Eq. (7): 

τ =
ηijkl

Cijkl
. (7) 

Six relaxation stress components are shown in Eq. (8a-b): 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σii(ε, t) = (C10 + C01⋅εii)⋅εii⋅e
−

t
τii , τii =

η
C10 + C01⋅εii

.

σij(ε, t) = − 2C01⋅εij⋅e
−

t
τij , τij = −

η
2C01

.

(8a-b) 

Here, σii(ε,t) represents three positive relaxation stresses, and σij(ε,t) 
represents three shear relaxation stresses.

The generalized Maxwell-Mooney-Rivlin model (Fig. 11) consists of 
n Maxwell-Mooney-Rivlin nonlinear viscoelastic fluid models connected 
in parallel with infinite hyperelastic springs (H∞). This can characterize 
the stress relaxation constitutive behavior of nonlinear viscoelastic 
solids (Fig. 9b). The Maxwell-Mooney-Rivlin nonlinear viscoelastic fluid 
model exhibits instantaneous Mooney-Rivlin hyperelastic behavior 
under step loading, and the hyperelastic spring stores elastic strain en-
ergy. Under constant strain, the damper (ηr

1) consumes the elastic strain 
energy (Hr

1) of the hyperelastic spring. Finally, the stress relaxation of 
the Maxwell-Mooney-Rivlin nonlinear viscoelastic fluid model reached 
0 N. The stress of the generalized Maxwell-Mooney-Rivlin model con-
verges to an infinite hyperelastic spring (H∞) after infinite time.

For uniaxial tension, the relaxation stress of the generalized 
Maxwell-Mooney-Rivlin model is given by Eq. (9): 

σ11(ε, t) = σε11
H∞ +

∑n

1

(
Ci

10 − Ci
01⋅ε11

)
⋅ε11⋅e

−
t

τi
11 , τi

11 =
ηi(

Ci
10 − Ci

01⋅ε11
). (9) 

Here, σε11
H∞ is the corresponding stress of Mooney-Rivlin infinite 

hyperelastic spring (H∞) at a strain of ε11. Ci
10 and Ci

01 are the model 
parameters of the Mooney-Rivlin hyperelastic spring in the i-th 
Maxwell-Mooney-Rivlin fluid model. ηi is the model parameter of the 
damper in the i-th Maxwell-Mooney-Rivlin fluid model. τi

11 is the 
relaxation time of the damper in the i-th Maxwell-Mooney-Rivlin fluid 
model.

The relaxation modulus spectrum is shown in Eq. (10): 

G11(ε, t) =
σε11

H∞

ε11
+
∑n

1

(
Ci

10 − Ci
01⋅ε11

)
⋅e

−
t

τi
11 , τi

11 =
ηi(

Ci
10 − Ci

01⋅ε11
). (10) 

4.3.2. Nonlinear viscoelastic creep constitutive model
In 1875, Kelvin proposed the Kelvin linear viscoelastic solid model, 

which consists of a linear elastic spring and a damper connected in 
parallel. Considering the general nonlinear viscoelastic creep behavior 
characteristics (Fig. 9b), we propose the Kelvin-Mooney-Rivlin 
nonlinear viscoelastic solid model, which consists of a hyperelastic 
spring (Hc

1) and a damper (ηc
1) connected in parallel (Fig. 10b).

The derivation of the tensor algebraic calculus constitutive model for 
the Kelvin-Mooney-Rivlin solid model is as follows: 

σkl(t) =
εijσ, t
Dijkl

+ ηijkl⋅
dεijσ, t

dt
. (11) 

The Kelvin-Mooney-Rivlin solid model is subjected to a creep load of 
σkl(t) = σklΔ(t), where σkl is the constant stress and Δ(t) is the unit step 
function. The creep strain εijσ,t of the Kelvin-Mooney-Rivlin solid model 
can be obtained as follows: 

εijσ, t = Dijkl⋅σkl

⎛

⎝1 − e−
t
λ

⎞

⎠. (12) 

The creep retardation time λ is shown in Eq. (13): 

λ = ηijkl⋅Dijkl. (13) 

Six creep strain components are shown in Eqs (14a-b): 

Fig. 11. Generalized Maxwell-Mooney-Rivlin constitutive model.
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εii(σ, t) = A1⋅σii⋅

⎛

⎝1 − e−
t

λii

⎞

⎠, λii = η⋅A1.

εij(σ, t) =
σij

− 2C01
⋅

⎛

⎜
⎝1 − e

−
t

λij

⎞

⎟
⎠, λij = −

η
2C01

.

(14a-b) 

Here, εii(σ,t) represents three positive creep strains, and εij(σ,t) rep-
resents three shear creep strains.

The generalized Kelvin-Mooney-Rivlin model (Fig. 12) consists of n 
Kelvin-Mooney-Rivlin nonlinear viscoelastic solid models connected in 
series with an instantaneous hyperelastic spring (H0). This can charac-
terize the creep constitutive behavior of nonlinear viscoelastic solids 
(Fig. 9b). The generalized Kelvin-Mooney-Rivlin model exhibits 
instantaneous Mooney-Rivlin hyperelastic behavior (H0) under step 
loading. Under constant stress, the damper (ηc

1) delays the hyperelastic 
deformation (Hc

1) of the hyperelastic spring. Finally, the creep strain of 
the generalized Kelvin-Mooney-Rivlin model converges to the infinite 
hyperelastic behavior (H∞).

In order to ensure the stability of the Mooney-Rivlin model, the pa-
rameters generally need to follow the rule of Ci

10 + Ci
01 > 0. For uniaxial 

tension, the creep strain of the generalized Kelvin-Mooney-Rivlin model 
is given by Eq. (15): 

ε11(σ, t) = εσ11
H∞ +

∑n

1

Ci
10 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ci
10

2
− 4Ci

01⋅σ11

√

2Ci
01⋅σ11

⋅σ11⋅

⎛

⎜
⎝1 − e

−
t

λi
11

⎞

⎟
⎠. (15) 

Here, λi
11 is the creep retardation time in the i-th Kelvin-Mooney- 

Rivlin model, as shown in Eq. (16): 

λi
11 = ηi⋅

Ci
10 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ci
10

2
− 4Ci

01⋅σ11

√

2Ci
01⋅σ11

. (16) 

εσ11
H∞ is the strain corresponding to the instantaneous hyperelastic 

spring (H0) at a stress of σ11. Ci
10 and Ci

01 are the model parameters of the 
Mooney-Rivlin hyperelastic spring in the i-th Kelvin-Mooney-Rivlin 
solid model. ηi is the model parameter of the damper in the i-th 
Kelvin-Mooney-Rivlin solid model.

The creep compliance spectrum is shown in Eq. (17): 

J11(σ, t) =
εσ11

H∞

σ11
+
∑n

1

Ci
10 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ci
10

2
− 4Ci

01⋅σ11

√

2Ci
01⋅σ11

⋅

⎛

⎜
⎝1 − e

−
t

λi
11

⎞

⎟
⎠. (17) 

4.4. Boltzmann superposition principle and Boltzmann’s equations

The Boltzmann superposition principle provides a qualitative 
mechanistic description of single-physics field superposition in solid 
materials. The corresponding Boltzmann’s equations represents its 
quantitative mathematical formulation.

4.4.1. Boltzmann superposition principle
In 1874, Boltzmann established the Boltzmann linear superposition 

principle [3,4]. It describes the strain and stress response of linear solid 
materials under generalized relaxation and creep loads. However, there 
is still no unified analytical equation linking special statics and gener-
alized statics for nonlinear solid materials (Fig. 1). The Boltzmann su-
perposition principle is the core concept of linear viscoelastic 
constitutive theory and is not applicable to describing the mechanical 
behavior of nonlinear viscoelasticity. Therefore, Zhou et al. [24] pro-
posed a method based on the physical concept of ’anchored’, which can 
be qualitatively transformed from linear to nonlinear. The detailed 
process is shown below: 

(1) The contribution of micro stress/micro strain applied in each 
stage to the final total deformation/relaxation remains indepen-
dent, and the final total deformation/relaxation is the super-
position of deformation/relaxation caused by micro stress/micro 
strain in each stage.

(2) Linear materials (linear elastic solids, linear viscoelastic solids) 
follow a linear superposition constitutive relation. The contri-
bution of micro stress/micro strain is the same; The total defor-
mation/total relaxation is a linear superposition of the 
contributions of micro stress/micro strain in each stage 
(Fig. 13a).

(3) Nonlinear materials (nonlinear elastic solids, nonlinear visco-
elastic solids) follow a nonlinear superposition constitutive rela-
tion. The deformation/relaxation contributions caused by micro 
stress/micro strain are different, and the total deformation/total 
relaxation is a nonlinear superposition of micro stress/micro 
strain contributions in each stage (Fig. 13b).

The Boltzmann superposition principle qualitatively unifies the 
constitutive relation of single physics field superposition in solid 
mechanics.

4.4.2. Boltzmann’s equations
The strain of a linear viscoelastic material at any given moment 

depends on everything that has happened before, that is, the entire stress 
history σ(τ) that depends on τ < t. The creep compliance J(t) in the linear 
superposition principle followed by linear viscoelastic materials is 
stress-independent. The strain of nonlinear viscoelastic solid materials at 
any given time also depends on everything that has occurred previously, 
that is, on the entire stress history σ(τ) of τ < t. This effect is called long- 
tail memory effect [41]. Unlike linear viscoelastic materials, nonlinear 
viscoelastic materials follow a nonlinear superposition principle in 
which the creep compliance spectrum J(σ, t) is stress-dependent. The 
Boltzmann’s equations are the mathematical form of the Boltzmann 
superposition principle. The derivation of its nonlinear superposition 
constitutive relation is as follows: 

ε(σ, t) = σ(τ)⋅J[σ(τ), t]. (18) 

Here, 

ε(σ, t) = ε1(t) + ε2(t) + ⋯⋯ + εn(t) =
∑n

i=1
Δσi(τ)⋅J[σi(τ), t − τ]. (19) 

Here, 

Δσ(τ) = σ(τ+ dτ) − σ(τ) ≈ dσ =
dσ(τ)

dτ ⋅dτ. (20) 

Here, the creep strain contributed by dσ is 

dε(σ, t) = dσ⋅J[σi(τ), t − τ] = J[σi(τ), t − τ] dσ(τ)
dτ ⋅dτ. (21) 

Continuing Eq. (21) yields Eq. (22): 

Fig. 12. Generalized Kelvin-Mooney-Rivlin constitutive model.
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ε(σ, t) =
∫t

0

J[σ(τ), t − τ] dσ(τ)
dτ dτ. (22) 

On the contrary, the bridge equation between the special and 
generalized stress relaxation behaviors of nonlinear viscoelastic solids 
can be obtained, as shown in Eq. (23): 

Fig. 13. Boltzmann superposition principle. (a). Linear viscoelastic material: Principle of linear superposition. (b). Nonlinear viscoelastic materials: Principle of 
nonlinear superposition.

Fig. 14. Nonlinear viscoelastic constitutive behavior and model prediction. (a). Instantaneous hyperelastic constitutive behavior and instantaneous Mooney-Rivlin 
model prediction. (H0). (b). Nonlinear stress relaxation constitutive behavior and generalized Maxwell-Mooney-Rivlin model prediction. (c). Nonlinear creep 
constitutive behavior and generalized Kelvin-Mooney-Rivlin model prediction. (d). Infinite hyperelastic constitutive behavior and Infinite Mooney-Rivlin model 
prediction (H∞).

J. Zhou et al.                                                                                                                                                                                                                                    International Journal of Mechanical Sciences 296 (2025) 110330 

11 



σε, t =
∫t

0

G[ε(τ), t − τ] dε(τ)
dτ dτ. (23) 

Combining the two linear superposition constitutive equations 
described by Boltzmann [3,4], we have established the Boltzmann’s 
equations, as shown in Eqs (24a-d): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εt = σ0⋅J(t) +
∫t

0

J(t − τ) dσ(τ)
dτ dτ.

σt = ε0⋅G(t) +
∫t

0

G(t − τ) dε(τ)
dτ dτ.

ε(σ, t) = σ0⋅J(σ0, t) +
∫t

0

J[σ(τ), t − τ] dσ(τ)
dτ dτ.

σε, t = ε0⋅G(ε0, t) +
∫t

0

G[ε(τ), t − τ] dε(τ)
dτ dτ.

(24a-d) 

The Boltzmann’s equations provide a complete and unified summary 
of the basic laws of solid materials under static loads, pushing the single 
physical field superposition constitutive relation of solid mechanics to a 
new height. It is a bridge equation system that links special statics 
(Fig. 1a) and generalized statics (Fig. 1b).

5. Comparison between experimental and theoretical results

Section 5 presents systematic comparisons between experimental 
measurements and theoretical predictions. First, model predictions for 
nonlinear viscoelastic relaxation and creep behavior are validated 
against experimental PP data. Subsequently, the predictive capability of 
the Boltzmann equation is extended to characterize generalized relax-
ation and creep behavior under multi-stage loading conditions.

5.1. Prediction of nonlinear viscoelastic models

The experimental data verification of the incompressible nonlinear 
viscoelastic stress relaxation and creep constitutive model constructed 
under uniaxial tension of PP. Use the Mooney-Rivlin model (Eq. 1a) in 
the ABAQUS finite element software material model library to predict 
the instantaneous hyperelastic constitutive behavior of PP. Fig. 14a 
compares the experimental results with the model, which fully describes 
the instantaneous hyperelastic constitutive behavior of PP. The 
nonlinear viscoelastic stress relaxation constitutive equation (Eq. 9) was 
used to predict the stress relaxation constitutive behavior of PP. Using 
the Origin software for fitting, Fig. 14b shows the generalized Maxwell- 
Mooney-Rivlin model capturing the nonlinear relaxation behavior under 
three different constant strains (0.5 %, 0.75 %, and 1 %). The parameters 
of the nonlinear relaxation model are shown in Table 1. Based on the 
nonlinear viscoelastic stress relaxation model and model parameters, the 
relaxation behavior covering the entire nonlinear viscoelastic zone can 
be predicted, with constant strain ranging from 0 to 1.3 %.

The nonlinear creep constitutive behavior of PP was predicted using 
the nonlinear viscoelastic creep constitutive equation (Eq. 15). Using the 
Origin software for fitting, Fig. 14c shows the generalized Kelvin- 

Mooney-Rivlin model capturing the nonlinear creep behavior under 
three different constant stresses (4, 6, and 8 MPa). The parameters of the 
nonlinear creep model are shown in Table 2. Based on the nonlinear 
viscoelastic creep model and model parameters, the creep behavior 
covering the entire nonlinear viscoelastic zone can be predicted, with 
constant stress ranging from 0 to 8 MPa. Three sets of relaxation and 
three sets of creep experimental data converge to an infinite hyperelastic 
behavior after infinite time (Fig. 14d). Use the Mooney-Rivlin model 
(Eq. 1a) in the ABAQUS finite element software material model library 
to predict the infinite hyperelastic constitutive behavior of PP (Fig. 14d). 
The models constructed in this study effectively predicted the experi-
mental results of PP under uniaxial tension, with an overall prediction 
accuracy (R2>0.98).

5.2. Prediction of Boltzmann’s equations

The nonlinear generalized relaxation and creep constitutive behavior 
of PP was predicted using the Boltzmann nonlinear superposition prin-
ciple and Boltzmann’s equations (Eqs. 24c-d). Overall, the subsequent 
evolution of the generalized relaxation stage in the first, second, and 
third stages matches the experimental data well with the non-linear 
viscoelastic superposition. (Fig. 15a). The nonlinear viscoelastic super-
position of generalized creep constitutive behavior was well captured by 
the model prediction for the first, second, and third nonlinear visco-
elastic superposition constitutive behaviors (Fig. 15b).

6. Discussion

Section 6 is structured into three components: General constitutive 
behavior framework, Methodology for nonlinear viscoelastic constitu-
tive modeling, and Boltzmann superposition principle and Boltzmann’s 
equations.

6.1. General constitutive behavior framework

Determining the stability of viscoelastic structures remains a chal-
lenging task. Seemingly stable conformations of viscoelastic structures 
may gradually creep until their stability is lost, while a discernible 
creeping in viscoelastic solids does not necessarily lead to instability 
[42]. The issue of structural stability is to determine the threshold stress 
between low-stress creep stability and high-stress creep instability, and 
the threshold stress must be obtained through experiments. For 
example, Huo et al. [43] proposed a new constitutive relationship for 
high-temperature creep of alloys. Among them, At 550 ◦C, constant 
low-stress (835 and 850 MPa) maintains creep stability, while constant 
high-stress (890 and 920 MPa) leads to creep instability and creep 
fracture. However, the creep stability of alloys is uncertain when the 
creep stress is around 850~890 MPa. At 600 ◦C, constant low-stress (730 
MPa) maintains creep stability, while constant high-stress (780 and 815 
MPa) leads to creep instability and creep fracture. However, the creep 
stability of alloys is uncertain when the creep stress is around 730~780 
MPa. The essence of the long-standing problem that has plagued people 
is the lack of a theoretical framework to predict the future stability of 
these systems [42–44]. Zhou et al. [5] established a general constitutive 
behavior framework for metal alloys at any constant high temperature, 
defining the yield strength and fracture strength of metals at any 

Table 1 
Generalized Maxwell-Mooney-Rivlin model parameters.

H∞ ηr
1 Hr

1 ηr
2

C∞
10(MPa) C∞

01(MPa) η1(MPa ⋅ s) C1
10(MPa) C1

01(MPa) η2(MPa ⋅ s)
-2659.235 2798.023 4897.802 411.2609 2553.5468 355300.869
Hr

2 ηr
3 Hr

3 
C2

10(MPa) C2
01(MPa) η3(MPa ⋅ s) C3

10(MPa) C3
01(MPa) 

338.19191 12292.9652 10335995.7 237.57643 2809.3013 
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constant high temperature (Fig. 8b & 9a). This improvement resolved 
creep stability prediction for metals across all high temperatures. By 
analogy, it is imperative to establish a general constitutive behavior 
framework for nonlinear viscoelastic solid materials.

The key to our analysis of stability in nonlinear viscoelastic materials 
lies in the discovery of a new stationarity property. Previously, 
numerous researchers have investigated the stress relaxation and creep 
properties of nonlinear viscoelastic solid materials from an experimental 
perspective. This encompasses biomaterials like cartilage [17], trabec-
ular bone [18], intervertebral disc [45], biological tissues [46] and 
bovine cortical bone [47]. It also includes non-biomaterials such as PP 
[19,36], Poly-Ether-Ether-Ketone [48], polyurethane rubber [49], 
asphalt [50] and salt rock [51], among others.

Unlike in previous experiments, we have established a general 
constitutive behavior framework (Fig. 8d) for nonlinear viscoelastic 
solid materials on the basis of the experimental results. This framework 
has the ability to predict future creep stability. The infinite hyperelastic- 
plastic constitutive behavior is the only static stable boundary. This is a 
process of convergence from an instantaneous hyperelastic-plastic 
boundary to an infinite hyperelastic-plastic boundary. Any static 
constitutive behavior either converges to an infinite hyperelastic-plastic 
static stable boundary or does not converge but tends towards fracture. 
This was experimentally verified by stress relaxation (Fig. 3) and creep 
(Fig. 4). Our contribution is to solve the threshold stress problem of 
creep stability in nonlinear viscoelastic solids. The threshold stress is 
defined as the yield strength and fracture strength. This is a goal that 
previous researchers have not achieved [42,43,52]. In this study, the 
yield strength of PP is 8 MPa and the fracture strength is 13 MPa. The 
general constitutive behavior framework represents an improvement 
from qualitative to quantitative analysis for the creep stability analysis 
of nonlinear viscoelastic solids (Fig. 8d & 9b).

6.2. Methodology for nonlinear viscoelastic constitutive modeling

In the classical linear viscoelastic constitutive theory, the relaxation 
modulus G(t) of the generalized Maxwell model and the creep compli-
ance J(t) of the generalized Kelvin model are shown in Eqs (25) and (26)
[53–56]. It is also known as the Prony series [57]. 

G(t) = E∞ +
∑n

i=1
Eie

−
t
τi . (25) 

J(t) =
1
E0

+
∑n

i=1

1
Ei

⎛

⎝1 − e−
t
λi

⎞

⎠. (26) 

The relaxation modulus G(t) and creep compliance J(t) can be 
spatially transformed into the relaxation modulus spectrum G(ε, t) and 
creep compliance spectrum J(σ, t) [24]. Thus, G(t) = G(ε, t), J(t) = J(σ, t). 
Based on the general constitutive behavior framework (Fig. 8d). The 
nonlinear viscoelastic behavior indicates the characteristic of conver-
gence from an instantaneous hyperelastic boundary to an infinite 
hyperelastic boundary due to the time-independent energy stored in the 
elastic part and the time-dependent energy lost in the viscous part 
(Fig. 9b). The nonlinear viscoelastic relaxation modulus spectrum G(ε, t) 
and creep compliance spectrum J(σ, t) are strain dependent and stress 
dependent, respectively. Therefore, linear viscoelasticity (Fig. 9a) is the 
limit or special case of nonlinear viscoelasticity (Fig. 9b).

To the best of our knowledge, this study is the first manuscript 
modeled based on a general constitutive behavior framework (Fig. 8d & 
9b). Among them, the boundary of instantaneous hyperelastic and 
infinite hyperelastic behavior (Fig. 9b) is also the boundary of the 
constitutive model (Fig. 11 & 12). This modeling feature draws on and 
extends the generalized Maxwell and Kelvin linear viscoelastic theories. 
Replace the Mooney-Rivlin spring in the generalized Maxwell-Mooney- 
Rivlin model with a linear elastic spring, and transform the model into 

Table 2 
Generalized Kelvin-Mooney-Rivlin model parameters.

H0 ηc
1 Hc

1 ηc
2

C0
10(MPa) C0

01(MPa) η1(MPa ⋅ s) C1
10(MPa) C1

01(MPa) η2(MPa ⋅ s)
-5486.1665 5782.14912 4794.8691 58.306613 99.882724 214285.009
Hc

2 ηc
3 Hc

3 
C2

10(MPa) C2
01(MPa) η3(MPa ⋅ s) C3

10(MPa) C3
01(MPa) 

69.245737 119.9964 1604604.37 47.463378 70.247691 

Fig. 15. Boltzmann nonlinear superposition constitutive relation and model prediction. (a). Comparison between generalized relaxation constitutive behavior and 
Boltzmann’s equations. (b). Comparison between generalized creep constitutive behavior and Boltzmann’s equations.
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the generalized Maxwell model. The nonlinear viscoelastic stress 
relaxation model Eq. (10) is transformed into a linear viscoelastic stress 
relaxation Eq. (25). Among them, the parameters C10 and C01 of the 
Mooney-Rivlin model replace the Young’s modulus in linear viscoelastic 
theory. The nonlinear viscoelastic relaxation modulus spectrum is 
transformed into a linear viscoelastic relaxation modulus. Replace the 
Mooney-Rivlin spring in the generalized Kelvin-Mooney-Rivlin model 
with a linear elastic spring, and transform the model into a generalized 
Kelvin model. The nonlinear viscoelastic creep model Eq. (17) is trans-
formed into a linear viscoelastic creep Eq. (26). Among them, the pa-
rameters C10 and C01 of the Mooney-Rivlin model replace the Young’s 
modulus in linear viscoelastic theory. The nonlinear viscoelastic creep 
compliance spectrum is transformed into a linear viscoelastic creep 
compliance.

The development of nonlinear viscoelastic solid constitutive models 
dates back to early studies, with foundational approaches relying on 
superpositions of hyperelastic and viscoelastic components [58,59]. For 
instance, this strategy has been applied to model hydrogels [60,61]. 
However, our novel approach integrates a hyperelastic model with 
Newtonian viscous mechanics. While instantaneous hyperelasticity 
aligns with prior work, the hyperelastic component is embedded within 
the overall nonlinear viscoelastic framework, abolishing the indepen-
dence between hyperelasticity and viscoelasticity. A unique aspect of 
this model is the definition of infinite hyperelastic limits, which extends 
temporal characterization to infinite time—a feature absent in previous 
formulations. These innovations distinguish our nonlinear viscoelastic 
modeling approach from existing hydrogel models [60,61].

The primary innovation of this study lies in the development of a 
methodology for constructing nonlinear viscoelastic constitutive re-
lations. For the first time, we propose a "underlying architecture" based 
on series-parallel configurations of hyperelastic springs and dampers 
(Fig. 10). It is the most fundamental and core structural design in the 
future nonlinear viscoelastic theory system, which determines the 
operational logic, scalability, and stability of the entire system.

The construction of the hyperelastic constitutive theory system 
mainly focused on the 20th century. Table 3 presents the strain energy 
functions (W) of several major classical incompressible hyperelastic 
theoretical models. Based on our proposed "underlying architecture" 
logic. Building upon this foundational architecture, constructing 
Maxwell-Mooney-Rivlin, Maxwell-Yeoh, Maxwell-Blatz-Ko, and 
Maxwell-Ogden nonlinear viscoelastic relaxation fluid models proves 
relatively straightforward. However, the most difficult point in con-
structing nonlinear viscoelastic creep models is that they may not be 
able to be expressed using explicit equations.

To derive the explicit form of the Kelvin-Mooney-Rivlin creep model, 
the strain tensor invariants were reduced to principal strain tensor in-
variants, enabling the Mooney-Rivlin model to be represented as a di-
agonal matrix (Appendix A). This transformation facilitates explicit 
expression of the nonlinear creep equation. Notably, the constitutive 
equation developed in this study is restricted to uniaxial/biaxial tensile 
loadings of nonlinear viscoelastic solid materials. Its inability to be 
directly integrated with finite element methods for complex stress 
conditions represents a limitation to be addressed in future research.

Regarding model generalizability, we observed that increasing the 
number of Maxwell-Mooney-Rivlin fluid and Kelvin-Mooney-Rivlin 

solid units improves fitting accuracy during parameter identification. 
Ultimately, three units were selected for each model to characterize PP 
behavior. Secondly, it is essential to emphasize that nonlinear visco-
elastic behavior represents a convergence process from instantaneous 
hyperelasticity (the initial state of relaxation/creep) to infinite hyper-
elasticity (the terminal state of relaxation/creep). The instantaneous 
hyperelasticity curve serves as the starting point for relaxation and creep 
responses, while the infinite hyperelasticity curve represents their long- 
term convergence limit. Accurate characterization of these two 
hyperelastic states is critical for modeling nonlinear relaxation and 
creep behavior. Notably, hyperelastic models such as Mooney-Rivlin 
exhibit superior fitting precision for highly nonlinear elastic behaviors 
with inflection points. Therefore, when generalizing this framework to 
other polymeric materials, maintaining boundary accuracy between 
instantaneous and infinite hyperelasticity is pivotal for ensuring pre-
dictive reliability.

Early hyperelastic constitutive models were only applicable to 
incompressible solids such as rubber. The Poisson’s ratio of rubber is 
0.49. Flory et al. [62] (Nobel Prize winner in Chemistry) first suggested 
dividing local deformation into "volumetric part" and "isocholic part", 
with the former corresponding to volume changes and the latter corre-
sponding to shear deformation. The compressible Mooney-Rivlin 
hyperelastic constitutive model is shown in Eq. (27) [63,64]: 

W = C10(I1 − 3) + C01(I2 − 3) +
1
D1

(J − 1)2
. (27) 

Here, D1 is a parameter related to the compressibility of the material. 
Accordingly, compressible solid models are constructed by adding 
compressible terms to incompressible frameworks. However, this study 
only derived the nonlinear viscoelastic relaxation and creep character-
istics of incompressible isotropic solids. On the one hand, the Poisson’s 
ratio of PP is 0.42, rather than the theoretically incompressible 0.5. The 
assumption of incompressibility limits the applicability of the model to 
micro compressible solid materials (Poisson’s ratio 0.45-0.5). However, 
incompressible models are the foundation for establishing compressible 
models in the future.

On the other hand, the Mooney-Rivlin model was originally devel-
oped to describe large deformation (>5 %) engineering applications of 
rubber materials, such as tires and sealing elements. Rubber can undergo 
strains up to 500 %, requiring stress-strain measurements based on the 
second Piola-Kirchhoff stress tensor and right Cauchy-Green strain 
tensor. The first, second, and third invariants of the strain tensor are the 
eigenvalues of the right Cauchy-Green strain tensor [63,65]. In contrast, 
nonlinear viscoelastic deformations of polymers typically involve small 
strains (<5 %). PP viscoelastic strain in this study remained below 1.3 % 
(Fig. 4f). Under the small deformation assumption, strain tensor in-
variants in this work are defined using eigenvalues of the Cauchy strain 
tensor (Appendix A). Notably, many biomaterials—e.g., enamel and 
trabecular bone—exhibit small deformations, while others like carti-
lage, muscle, and blood vessels can sustain 50–100 % strains. Bioma-
terial applications thus depend crucially on appropriate strain tensor 
measurements. Future studies will focus on developing constitutive 
models for compressible solids under large deformations, while this 
work restricts itself to incompressible solids and small deformations.

6.3. Boltzmann superposition principle and Boltzmann’s equations

The relaxation modulus G(t) in the Maxwell model and the creep 
compliance J(t) in the Kelvin model can be substituted into the Boltz-
mann linear superposition equations (Fig. 16). It can characterize the 
constitutive behavior of linear viscoelastic solid materials under 
generalized relaxation and creep loads. As a cornerstone of classical 
viscoelasticity, the Boltzmann linear superposition principle [3,4], 
bridges special statics (Fig. 1a) and generalized statics (Fig. 1b).

For nonlinear viscoelastic solid materials, the linear superposition 
principle fails to apply. Green and Rivlin [29] proposed an approximate 

Table 3 
Several classic hyperelastic constitutive strain energy functions.

Constitutive models Strain energy functions (W)

Neo-Hookean C10(I1 − 3)
Mooney-Rivlin C10(I1 − 3) + C01(I2 − 3)
Yeoh C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3

Blatz-Ko μ
2

(
I2
I3

+ 2
̅̅̅̅
I3

√
)

Odgen ∑N
i=1

μi
αi

(λ1
αi + λ2

αi + λ3
αi − 3)
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equations (Fig. 16) for linking the special statics (Fig. 1a) and general-
ized statics (Fig. 1b) of nonlinear solids. However, they are not analyt-
ical equations. Building upon the first three terms of their 
approximation, power-law formulations have been developed to char-
acterize nonlinear creep behavior, such as Eq. (28) [33–35]. Nutting’s 
law [66,67], a widely adopted creep model, adopts a power-law form 
expressed as: ε(σ, t) = ε0 + Aσntm. 

ε(σ, t) = ε0 + Atn =
(
μ1σ + μ2σ2 + μ3σ3)+

(
γ1σ + γ2σ2 + γ3σ3)tn. (28) 

Here, ε(σ, t) is the creep strain spectrum. μi, γi and n representing 
seven fitting parameters. σ is the applied constant stress. Notably, early 
researchers recognized stress-dependence in creep strain/compliance, 
and characterizing strongly nonlinear creep compliance distributions 
marked a significant advancement [16–18]. However, power-law creep 
models and Nutting’s law inherently predict unbounded strain growth at 
all stress levels, directly conflicting with experimental observations of 
low-stress creep stabilization of viscoelastic solids. The power-law creep 
equation, widely used in rheology, is well-suited for characterizing 
non-Newtonian and creep-unstable fluid behaviors.

As the founder of biomechanics, Fung [37] developed the 
quasi-linear viscoelasticity (QLV) theory, which balances complexity 
and practicality in modeling biological soft tissue mechanics via a 
"quasi-linear" architecture. This framework has become a cornerstone in 
biomechanics, with its core principle decoupling nonlinear elasticity 
from linear viscoelasticity. The elastic stress σe(ε) is nonlinear (such as 
an exponential function or polynomial), while the viscoelastic response 
is coupled with the elastic part through linear integration (convolution), 
forming a "quasi-linear" structure (Fig. 15). However, QLV theory is 
based on normalized relaxation modulus "G(t)". QLV theory exhibits 
limitations in characterizing strongly nonlinear viscoelasticity, as 
demonstrated by PP experimental results. Here, relaxation modulus 
decreases with increasing constant strain (Fig. 5a), indicating 
strain-dependent relaxation modulus spectrum G(ε, t). QLV’s reliance on 
strain-independent inherently restricts its ability to capture such 
nonlinear viscoelastic behavior.

Schapery [39,68] extended linear viscoelasticity by introducing 
nonlinear correction functions and time-temperature superposition 
(shift factor), systematically deriving nonlinear viscoelastic constitutive 
equations (Fig. 16). This framework has found broad applications in 
polymers and their fiber-reinforced composites [69–71]. Notably, Rafiee 
et al. [69] developed a comprehensive integrated framework for creep 
analysis of composite structures incorporating the Schapery model, 
yielding significant advancements in predictive capabilities. Through 
inclusion of nonlinear correction functions (g0, g1, g2, aσ) and the 

reduction time ξ(t) =
∫t

0

1
aσ(σ)

dτʹ in this equation, the Schapery equation 

achieves exceptional mathematical accuracy [68]. Notwithstanding, 
this formulation represents a mathematical correction, preserving 
instantaneous elastic compliance (D0) or modulus (E0) at the physical 
level (Fig. 16). Describe the instantaneous nonlinear elastic behavior 
through mathematical nonlinear functions g0 and h0. Numerous 
visco-hyperelastic constitutive modeling systems have abandoned 
instantaneous elastic modulus and adopted instantaneous hyperelastic 
models to characterize instantaneous nonlinear elastic behavior. For 
example, constitutive modeling of hydrogels [60,61]. From a mecha-
nistic perspective, Schapery’s equations resemble Kepler’s third law—a 
geometrically significant mathematical descriptor—while physical the-
ories like Newtonian gravitation offer causal explanations. This essential 
distinction highlights that the Schapery model’s core value resides in its 
mathematical analysis framework for nonlinear corrections, rather than 
explanations of material mechanics principles.

Our research methodology diverges from Fung and Schapery’s 
equation-based corrections. Zhou et al. [24] introduced the "anchored" 
physical concept, systematically reframing the Boltzmann superposition 
principle. This work provides a quantitative formulation rooted in the 
Boltzmann nonlinear superposition principle, first establishing the dia-
lectical unity between linear and nonlinear theories. Geometrically, a 
curve’s finite radius of curvature contrasts with a straight line’s infinite 
radius. In essence, a straight line represents a curve with an infinitely 
large radius, rendering it a limiting case of curved geometry. Similarly, 
instantaneous/infinite linear elastic behavior (straight line, Fig. 9a) and 
hyperelastic behavior (curve, Fig. 9b) exhibit analogous dialectical re-
lationships, with linear viscoelasticity serving as the infinite limit of 
nonlinear viscoelasticity. Notably, nonlinear superposition constitutive 
relations exhibit broader applicability compared to their linear super-
position constitutive relations. In nonlinear superposition, J(σ1, t) ∕=
J(σ2, t) ∕= J(σ3, t)(Fig. 5b). In linear superposition, the nonlinear visco-
elastic creep compliance spectrum can be simplified as linear visco-
elastic creep compliance J(σ1,t) = J(σ2,t) = J(σ3,t) = J(t). This reduces 
Boltzmann nonlinear superposition equations to linear form (Fig. 16), 
demonstrating that the stress-independent linear principle represents a 
special case of stress-dependent nonlinear superposition. Theoretical 
analysis further reveals that the Boltzmann nonlinear superposition 
principle is applicable to anisotropic nonlinear viscoelastic materials 
[72].

Our key contribution is deriving the constitutive equations for single 
physical field superposition in nonlinear viscoelastic solids based on the 

Fig. 16. The development history of single physics field superposition in solid materials.
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Boltzmann nonlinear superposition principle [24]. This nonlinear su-
perposition framework exhibits profound dialectical coherence with the 
linear theoretical system. The derived equations bridge special statics 
(Fig. 1a) and generalized statics (Fig. 1b) of nonlinear viscoelastic ma-
terials, establishing a unified theoretical foundation for their mechanical 
behavior.

7. Conclusions

This study takes polypropylene as a typical nonlinear viscoelastic 
solid material and investigates its isotropic nonlinear viscoelastic 
properties. The main conclusions are as follows:

We proposes and validates a general constitutive behavior frame-
work for nonlinear viscoelastic solids, demonstrating that the infinite 
hyperelastic-plastic limit serves as the unique physical boundary gov-
erning structural creep stability. Our principal contribution lies in 
quantifying the threshold stress separating low-stress creep stability 
from high-stress creep instability—a critical improvement transitioning 
from qualitative to quantitative analysis.

We introduce a series-parallel theoretical framework of hyperelastic 
springs and dampers to characterize nonlinear viscoelasticity. Pre-
liminary validation confirms the effectiveness of Maxwell-Mooney- 
Rivlin fluid relaxation and Kelvin-Mooney-Rivlin solid creep models. 
This architecture lays a foundational basis for future developments, 
including Maxwell-Ogden fluid relaxation and Kelvin- Blatz-Ko solid 
creep models, etc.

To predict material behavior under complex stress conditions, we 
derive Boltzmann’s equations based on the nonlinear superposition 
principle, characterizing single-physics superposition in nonlinear 
viscoelastic solids. While Boltzmann’s original work established linear 

superposition relations, our innovation extends this to stress (strain)- 
dependent nonlinear superposition. Theoretical significance resides in 
the proposed methodology for constructing nonlinear viscoelastic the-
ory systems, offering a scalable approach to future modeling challenges.
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Appendix A. Matrix form of the Mooney-Rivlin model

The incompressible isotropic Mooney Rivlin hyperelastic model is shown in Eq. (A1): 

W = C10(I1 − 3) + C01(I2 − 3). (A1) 

Due to the description of small deformations (ε < 5 %). This study adopts the isotropic Cauchy stress-strain tensor measurement method. I1 and I2 
are the first and second invariants of the Cauchy strain tensor. As shown in Eq. (A2): 
{

I1 = ε11 + ε22 + ε33 = 0 (incompressible).
I2 = ε11⋅ε22 + ε22⋅ε33 + ε33⋅ε11 −

(
ε12

2 + ε13
2 + ε23

2).
(A2) 

Through principal direction analysis, complex three-dimensional problems can be transformed into independent deformation problems along the 
main axis, significantly reducing computational difficulty while preserving core physical mechanisms. Tensors degenerate into diagonal form, and 
invariants are directly calculated from principal values. This series of simplifications is aimed at allowing the nonlinear creep equation to be described 
using explicit equations.

The strain tensor invariant is simplified as the main strain tensor invariant, as shown in the Eq. (A3): 
{

I1 = ε11 + ε22 + ε33 = 0.
I2 = ε11⋅ε22 + ε22⋅ε33 + ε33⋅ε11.

(A3) 

The stress tensor is obtained by taking the partial derivative of the strain energy W with respect to the strain tensor, as shown in Eqs (A4) and (1b): 

[
σij
]
=

[
∂W
∂εij

]
[
εij
]
. (A4) 
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viscoelastic material model for thermoplastic polymers. J Appl Polym Sci 2022; 
139:52028.

[72] Sadik S, Yavari A. Nonlinear anisotropic viscoelasticity. J Mech Phys Solids 2024; 
182:105461.

J. Zhou et al.                                                                                                                                                                                                                                    International Journal of Mechanical Sciences 296 (2025) 110330 

17 

http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0007
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0008
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0008
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0009
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0009
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0010
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0010
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0011
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0011
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0012
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0012
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0012
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0013
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0013
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0014
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0014
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0015
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0015
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0016
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0016
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0016
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0017
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0017
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0017
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0018
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0018
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0018
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0019
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0019
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0020
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0020
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0020
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0021
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0021
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0022
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0022
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0022
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0023
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0023
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0023
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0024
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0024
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0024
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0025
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0025
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0026
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0027
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0027
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0028
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0028
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0029
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0029
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0030
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0030
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0031
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0031
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0032
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0032
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0033
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0033
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0034
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0034
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0034
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0035
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0035
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0036
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0036
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0037
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0037
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0038
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0038
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0039
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0039
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0039
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0040
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0040
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0040
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0041
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0041
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0042
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0042
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0043
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0043
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0044
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0044
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0045
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0045
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0045
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0046
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0046
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0046
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0047
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0047
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0047
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0048
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0048
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0048
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0049
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0049
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0049
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0050
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0050
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0051
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0051
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0051
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0052
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0052
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0053
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0053
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0053
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0054
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0054
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0055
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0055
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0055
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0056
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0056
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0057
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0057
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0058
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0058
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0059
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0059
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0059
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0060
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0060
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0060
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0061
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0061
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0061
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0062
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0062
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0063
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0064
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0064
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0065
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0065
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0066
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0067
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0067
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0068
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0068
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0069
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0069
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0070
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0070
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0070
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0071
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0071
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0071
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0072
http://refhub.elsevier.com/S0020-7403(25)00416-3/sbref0072

	Nonlinear viscoelasticity of incompressible isotropic solids
	1 Introduction
	2 Materials and methods
	2.1 Preparation of specimens
	2.2 Experiment

	3 Experimental result
	3.1 Stress relaxation constitutive behavior
	3.2 Creep constitutive behavior
	3.3 Yield strain and engineering allowable stress
	3.4 Generalized nonlinear constitutive behavior

	4 Constitutive behavior and models
	4.1 General constitutive behavior framework
	4.2 Relaxation and creep constitutive behavior
	4.3 Constitutive modeling
	4.3.1 Nonlinear viscoelastic relaxation constitutive model
	4.3.2 Nonlinear viscoelastic creep constitutive model

	4.4 Boltzmann superposition principle and Boltzmann’s equations
	4.4.1 Boltzmann superposition principle
	4.4.2 Boltzmann’s equations


	5 Comparison between experimental and theoretical results
	5.1 Prediction of nonlinear viscoelastic models
	5.2 Prediction of Boltzmann’s equations

	6 Discussion
	6.1 General constitutive behavior framework
	6.2 Methodology for nonlinear viscoelastic constitutive modeling
	6.3 Boltzmann superposition principle and Boltzmann’s equations

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Matrix form of the Mooney-Rivlin model
	Data availability
	References


